merge: Add pronic number implementation (#1023)

* feat: Add pronic number implementation

* Add test to Math

* Minor fixes

* Minor style fixes

* refactor: Store square root in a variable

* Minor refactoring

* fix: Change pronic number check logic

Reduced time complexity from O(sqrt(n)) to O(1)

* Minor style fixes

* fix: Update pronic number check boolean equation

* refactor: Change pronic number check condition

* refactor: Add tests to Math

* Minor style fixes

* refactor: Change unit test logic
This commit is contained in:
Akshay Dubey
2022-05-25 17:39:23 +05:30
committed by GitHub
parent d28ae8b1f7
commit dc67506272
2 changed files with 39 additions and 0 deletions

27
Maths/IsPronic.js Normal file
View File

@ -0,0 +1,27 @@
/*
* Author: Akshay Dubey (https://github.com/itsAkshayDubey)
* Pronic Number: https://en.wikipedia.org/wiki/Pronic_number
* function to check if number is pronic.
* return true if number is pronic.
* else false
*/
/**
* @function isPronic
* @description -> Checking if number is pronic using product of two consecutive numbers
* If number is a product of two consecutive numbers, then it is pronic
* therefore, the function will return true
*
* If number is not a product of two consecutive numbers, then it is not pronic
* therefore, the function will return false
* @param {number} number
* @returns {boolean}
*/
export const isPronic = (number) => {
if (number === 0) {
return true
}
const sqrt = Math.sqrt(number)
return sqrt % 1 !== 0 && Math.ceil(sqrt) * Math.floor(sqrt) === number
}

View File

@ -0,0 +1,12 @@
import { isPronic } from '../IsPronic'
const pronicNumbers = [0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550]
describe('Testing isPronic function', () => {
for (let i = 0; i <= 2500; i++) {
it('should return true', () => {
const isPronicNumber = isPronic(i)
expect(isPronicNumber).toBe(pronicNumbers.includes(i))
})
}
})