mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-06 01:18:23 +08:00
Dijkstras algorithm (#161)
* Renaming files according to naming convention * Added Dijkstra's Algorithm
This commit is contained in:
76
Algorithms/Dijkstra's.js
Normal file
76
Algorithms/Dijkstra's.js
Normal file
@ -0,0 +1,76 @@
|
||||
/**
|
||||
* Author: Samarth Jain
|
||||
* Dijkstra's Algorithm implementation in JavaScript
|
||||
* Dijkstra's Algorithm calculates the minimum distance between two nodes.
|
||||
* It is used to find the shortes path.
|
||||
* It uses graph data structure.
|
||||
*/
|
||||
|
||||
function createGraph (V, E) {
|
||||
// V - Number of vertices in graph
|
||||
// E - Number of edges in graph (u,v,w)
|
||||
const adjList = [] // Adjacency list
|
||||
for (let i = 0; i < V; i++) {
|
||||
adjList.push([])
|
||||
}
|
||||
for (let i = 0; i < E.length; i++) {
|
||||
adjList[E[i][0]].push([E[i][1], E[i][2]])
|
||||
adjList[E[i][1]].push([E[i][0], E[i][2]])
|
||||
}
|
||||
return adjList
|
||||
}
|
||||
|
||||
function djikstra (graph, V, src) {
|
||||
const vis = Array(V).fill(0)
|
||||
const dist = []
|
||||
for (let i = 0; i < V; i++) dist.push([10000, -1])
|
||||
dist[src][0] = 0
|
||||
|
||||
for (let i = 0; i < V - 1; i++) {
|
||||
let mn = -1
|
||||
for (let j = 0; j < V; j++) {
|
||||
if (vis[j] === 0) {
|
||||
if (mn === -1 || dist[j][0] < dist[mn][0]) mn = j
|
||||
}
|
||||
}
|
||||
|
||||
vis[mn] = 1
|
||||
for (let j = 0; j < graph[mn].length; j++) {
|
||||
const edge = graph[mn][j]
|
||||
if (vis[edge[0]] === 0 && dist[edge[0]][0] > dist[mn][0] + edge[1]) {
|
||||
dist[edge[0]][0] = dist[mn][0] + edge[1]
|
||||
dist[edge[0]][1] = mn
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return dist
|
||||
}
|
||||
|
||||
const V = 9
|
||||
const E = [
|
||||
[0, 1, 4],
|
||||
[0, 7, 8],
|
||||
[1, 7, 11],
|
||||
[1, 2, 8],
|
||||
[7, 8, 7],
|
||||
[6, 7, 1],
|
||||
[2, 8, 2],
|
||||
[6, 8, 6],
|
||||
[5, 6, 2],
|
||||
[2, 5, 4],
|
||||
[2, 3, 7],
|
||||
[3, 5, 14],
|
||||
[3, 4, 9],
|
||||
[4, 5, 10]
|
||||
]
|
||||
|
||||
const graph = createGraph(V, E)
|
||||
const distances = djikstra(graph, V, 0)
|
||||
|
||||
/**
|
||||
* The first value in the array determines the minimum distance and the
|
||||
* second value represents the parent node from which the minimum distance has been calculated
|
||||
*/
|
||||
|
||||
console.log(distances)
|
31
Algorithms/SieveOfEratosthenes.js
Normal file
31
Algorithms/SieveOfEratosthenes.js
Normal file
@ -0,0 +1,31 @@
|
||||
function sieveOfEratosthenes (n) {
|
||||
/*
|
||||
* Calculates prime numbers till a number n
|
||||
* :param n: Number upto which to calculate primes
|
||||
* :return: A boolean list contaning only primes
|
||||
*/
|
||||
const primes = new Array(n + 1)
|
||||
primes.fill(true) // set all as true initially
|
||||
primes[0] = primes[1] = false // Handling case for 0 and 1
|
||||
const sqrtn = Math.ceil(Math.sqrt(n))
|
||||
for (let i = 2; i <= sqrtn; i++) {
|
||||
if (primes[i]) {
|
||||
for (let j = 2 * i; j <= n; j += i) {
|
||||
primes[j] = false
|
||||
}
|
||||
}
|
||||
}
|
||||
return primes
|
||||
}
|
||||
|
||||
function main () {
|
||||
const n = 69 // number till where we wish to find primes
|
||||
const primes = sieveOfEratosthenes(n)
|
||||
for (let i = 2; i <= n; i++) {
|
||||
if (primes[i]) {
|
||||
console.log(i)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
main()
|
Reference in New Issue
Block a user