mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-06 01:18:23 +08:00
Merge pull request #60 from thakursaurabh1998/heap-add-thakursaurabh
minimum priority queue added under heap
This commit is contained in:
128
Data Structures/Heap/MinPriorityQueue.js
Normal file
128
Data Structures/Heap/MinPriorityQueue.js
Normal file
@ -0,0 +1,128 @@
|
||||
|
||||
/* Minimum Priority Queue
|
||||
* It is a part of heap data structure
|
||||
* A heap is a specific tree based data structure
|
||||
* in which all the nodes of tree are in a specific order.
|
||||
* that is the children are arranged in some
|
||||
* respect of their parents, can either be greater
|
||||
* or less than the parent. This makes it a min priority queue
|
||||
* or max priority queue.
|
||||
*/
|
||||
|
||||
// Functions: insert, delete, peek, isEmpty, print, heapSort, sink
|
||||
|
||||
class MinPriorityQueue {
|
||||
|
||||
// calss the constructor and initializes the capacity
|
||||
constructor(c) {
|
||||
this.heap = [];
|
||||
this.capacity = c;
|
||||
this.size = 0;
|
||||
}
|
||||
|
||||
// inserts the key at the end and rearranges it
|
||||
// so that the binary heap is in appropriate order
|
||||
insert(key) {
|
||||
if (this.isFull()) return;
|
||||
this.heap[this.size + 1] = key;
|
||||
let k = this.size + 1;
|
||||
while (k > 1) {
|
||||
if (this.heap[k] < this.heap[Math.floor(k / 2)]) {
|
||||
let temp = this.heap[k];
|
||||
this.heap[k] = this.heap[Math.floor(k / 2)];
|
||||
this.heap[Math.floor(k / 2)] = temp;
|
||||
}
|
||||
k = Math.floor(k / 2);
|
||||
}
|
||||
this.size++;
|
||||
}
|
||||
|
||||
// returns the highest priority value
|
||||
peek() {
|
||||
return this.heap[1];
|
||||
}
|
||||
|
||||
// returns boolean value whether the heap is empty or not
|
||||
isEmpty() {
|
||||
if (0 == this.size) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// returns boolean value whether the heap is full or not
|
||||
isFull() {
|
||||
if (this.size == this.capacity) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// prints the heap
|
||||
print() {
|
||||
console.log(this.heap.slice(1));
|
||||
}
|
||||
|
||||
// heap sorting can be done by performing
|
||||
// delete function to the number of times of the size of the heap
|
||||
// it returns reverse sort because it is a min priority queue
|
||||
heapSort() {
|
||||
for (let i = 1; i < this.capacity; i++) {
|
||||
this.delete();
|
||||
}
|
||||
}
|
||||
|
||||
// this function reorders the heap after every delete function
|
||||
sink() {
|
||||
let k = 1;
|
||||
while (2 * k <= this.size || 2 * k + 1 <= this.size) {
|
||||
let minIndex;
|
||||
if (this.heap[2 * k] >= this.heap[k]) {
|
||||
if (2 * k + 1 <= this.size && this.heap[2*k+1] >= this.heap[k]) {
|
||||
break;
|
||||
}
|
||||
else if(2*k+1 > this.size){
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (2 * k + 1 > this.size) {
|
||||
minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k;
|
||||
} else {
|
||||
if (
|
||||
this.heap[k] > this.heap[2 * k] ||
|
||||
this.heap[k] > this.heap[2 * k + 1]
|
||||
) {
|
||||
minIndex =
|
||||
this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1;
|
||||
} else {
|
||||
minIndex = k;
|
||||
}
|
||||
}
|
||||
let temp = this.heap[k];
|
||||
this.heap[k] = this.heap[minIndex];
|
||||
this.heap[minIndex] = temp;
|
||||
k = minIndex;
|
||||
}
|
||||
}
|
||||
|
||||
// deletes the highest priority value from the heap
|
||||
delete() {
|
||||
let min = this.heap[1];
|
||||
this.heap[1] = this.heap[this.size];
|
||||
this.heap[this.size] = min;
|
||||
this.size--;
|
||||
this.sink();
|
||||
return min;
|
||||
}
|
||||
}
|
||||
|
||||
// testing
|
||||
q = new MinPriorityQueue(8);
|
||||
|
||||
q.insert(5);
|
||||
q.insert(2);
|
||||
q.insert(4);
|
||||
q.insert(1);
|
||||
q.insert(7);
|
||||
q.insert(6);
|
||||
q.insert(3);
|
||||
q.insert(8);
|
||||
q.print(); // [ 1, 2, 3, 5, 7, 6, 4, 8 ]
|
||||
q.heapSort();
|
||||
q.print(); // [ 8, 7, 6, 5, 4, 3, 2, 1 ]
|
Reference in New Issue
Block a user