Add Mandelbrot

This commit is contained in:
algobytewise
2021-03-20 17:31:45 +05:30
committed by GitHub
parent cb9c29e07b
commit 68f044054e

192
Maths/Mandelbrot.js Normal file
View File

@ -0,0 +1,192 @@
/**
* The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n +
* c" does not diverge, i.e. remains bounded. Thus, a complex number "c" is a member of the
* Mandelbrot set if, when starting with "z_0 = 0" and applying the iteration repeatedly, the
* absolute value of "z_n" remains bounded for all "n > 0". Complex numbers can be written as "a +
* b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary
* component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a
* color-coding to indicate after how many steps in the series the numbers outside the set cross the
* divergence threshold. Images of the Mandelbrot set exhibit an elaborate and infinitely
* complicated boundary that reveals progressively ever-finer recursive detail at increasing
* magnifications, making the boundary of the Mandelbrot set a fractal curve. (description adapted
* from https://en.wikipedia.org/wiki/Mandelbrot_set ) (see also
* https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set )
*/
/*
Doctests
Test black and white
Pixel outside the Mandelbrot set should be white.
Pixel inside the Mandelbrot set should be black.
> getRGBData(800, 600, -0.6, 0, 3.2, 50, false)[0][0]
[255, 255, 255]
> getRGBData(800, 600, -0.6, 0, 3.2, 50, false)[400][300]
[0, 0, 0]
Test color-coding
Pixel distant to the Mandelbrot set should be red.
Pixel inside the Mandelbrot set should be black.
> getRGBData(800, 600, -0.6, 0, 3.2, 50, true)[0][0]
[255, 0, 0]
> getRGBData(800, 600, -0.6, 0, 3.2, 50, true)[400][300]
[0, 0, 0]
*/
/**
* Method to generate the image of the Mandelbrot set. Two types of coordinates are used:
* image-coordinates that refer to the pixels and figure-coordinates that refer to the complex
* numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this
* method determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot
* set is roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates.
*
* @param {number} imageWidth The width of the rendered image.
* @param {number} imageHeight The height of the rendered image.
* @param {number} figureCenterX The x-coordinate of the center of the figure.
* @param {number} figureCenterY The y-coordinate of the center of the figure.
* @param {number} figureWidth The width of the figure.
* @param {number} maxStep Maximum number of steps to check for divergent behavior.
* @param {number} useDistanceColorCoding Render in color or black and white.
* @return {object} The RGB-data of the rendered Mandelbrot set.
*/
function getRGBData (
imageWidth = 800,
imageHeight = 600,
figureCenterX = -0.6,
figureCenterY = 0,
figureWidth = 3.2,
maxStep = 50,
useDistanceColorCoding = true) {
if (imageWidth <= 0) {
throw new Error('imageWidth should be greater than zero')
}
if (imageHeight <= 0) {
throw new Error('imageHeight should be greater than zero')
}
if (maxStep <= 0) {
throw new Error('maxStep should be greater than zero')
}
const rgbData = []
const figureHeight = figureWidth / imageWidth * imageHeight
// loop through the image-coordinates
for (let imageX = 0; imageX < imageWidth; imageX++) {
rgbData[imageX] = []
for (let imageY = 0; imageY < imageHeight; imageY++) {
// determine the figure-coordinates based on the image-coordinates
const figureX = figureCenterX + (imageX / imageWidth - 0.5) * figureWidth
const figureY = figureCenterY + (imageY / imageHeight - 0.5) * figureHeight
const distance = getDistance(figureX, figureY, maxStep)
// color the corresponding pixel based on the selected coloring-function
rgbData[imageX][imageY] =
useDistanceColorCoding
? colorCodedColorMap(distance)
: blackAndWhiteColorMap(distance)
}
}
return rgbData
}
/**
* Black and white color-coding that ignores the relative distance. The Mandelbrot set is black,
* everything else is white.
*
* @param {number} distance Distance until divergence threshold
* @return {object} The RGB-value corresponding to the distance.
*/
function blackAndWhiteColorMap (distance) {
return distance >= 1 ? [0, 0, 0] : [255, 255, 255]
}
/**
* Color-coding taking the relative distance into account. The Mandelbrot set is black.
*
* @param {number} distance Distance until divergence threshold
* @return {object} The RGB-value corresponding to the distance.
*/
function colorCodedColorMap (distance) {
if (distance >= 1) {
return [0, 0, 0]
} else {
// simplified transformation of HSV to RGB
// distance determines hue
const hue = 360 * distance
const saturation = 1
const val = 255
const hi = (Math.floor(hue / 60)) % 6
const f = hue / 60 - Math.floor(hue / 60)
const v = val
const p = 0
const q = Math.floor(val * (1 - f * saturation))
const t = Math.floor(val * (1 - (1 - f) * saturation))
switch (hi) {
case 0:
return [v, t, p]
case 1:
return [q, v, p]
case 2:
return [p, v, t]
case 3:
return [p, q, v]
case 4:
return [t, p, v]
default:
return [v, p, q]
}
}
}
/**
* Return the relative distance (ratio of steps taken to maxStep) after which the complex number
* constituted by this x-y-pair diverges. Members of the Mandelbrot set do not diverge so their
* distance is 1.
*
* @param {number} figureX The x-coordinate within the figure.
* @param {number} figureX The y-coordinate within the figure.
* @param {number} maxStep Maximum number of steps to check for divergent behavior.
* @return {number} The relative distance as the ratio of steps taken to maxStep.
*/
function getDistance (figureX, figureY, maxStep) {
let a = figureX
let b = figureY
let currentStep = 0
for (let step = 0; step < maxStep; step++) {
currentStep = step
const aNew = a * a - b * b + figureX
b = 2 * a * b + figureY
a = aNew
// divergence happens for all complex number with an absolute value
// greater than 4 (= divergence threshold)
if (a * a + b * b > 4) {
break
}
}
return currentStep / (maxStep - 1)
}
// plot the results if the script is executed in a browser with a window-object
if (typeof window !== 'undefined') {
const rgbData = getRGBData()
const width = rgbData.length
const height = rgbData[0].length
const canvas = document.createElement('canvas')
canvas.width = width
canvas.height = height
const ctx = canvas.getContext('2d')
for (let x = 0; x < width; x++) {
for (let y = 0; y < height; y++) {
const rgb = rgbData[x][y]
ctx.fillStyle = 'rgb(' + rgb[0] + ',' + rgb[1] + ',' + rgb[2] + ')'
ctx.fillRect(x, y, 1, 1)
}
}
document.body.append(canvas)
}