npm run style result

This commit is contained in:
VinWare
2021-10-21 15:06:33 +05:30
parent fe56f54f82
commit 5ccfafecbb
3 changed files with 52 additions and 52 deletions

View File

@ -5,15 +5,15 @@
* @param {number[]} arrayItems
* @returns number
*/
export function maxProductOfThree(arrayItems) {
export function maxProductOfThree (arrayItems) {
// if size is less than 3, no triplet exists
let n = arrayItems.length
const n = arrayItems.length
if (n < 3) throw new Error('Triplet cannot exist with the given array')
let max1 = arrayItems[0],
max2 = -1,
max3 = -1,
min1 = arrayItems[0],
min2 = -1
let max1 = arrayItems[0]
let max2 = -1
let max3 = -1
let min1 = arrayItems[0]
let min2 = -1
for (let i = 1; i < n; i++) {
if (arrayItems[i] > max1) {
max3 = max2
@ -32,7 +32,7 @@ export function maxProductOfThree(arrayItems) {
min2 = arrayItems[i]
}
}
let prod1 = max1 * max2 * max3,
prod2 = max1 * min1 * min2
const prod1 = max1 * max2 * max3
const prod2 = max1 * min1 * min2
return Math.max(prod1, prod2)
}

View File

@ -1,60 +1,60 @@
/**
* Problem statement and explanation: https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
*
*
* This algorithm plays an important role for modular arithmetic, and by extension for cyptography algorithms
*
*
* This implementation uses an iterative approach to calculate
*/
/**
*
*
* @param {Number} arg1 first argument
* @param {Number} arg2 second argument
* @returns Array with GCD and first and second Bézout coefficients
*/
const extendedEuclideanGCD = (arg1, arg2) => {
if(typeof arg1 != 'number' || typeof arg2 != 'number') throw new TypeError('Not a Number');
if(arg1 < 1 || arg2 < 1) throw new TypeError('Must be positive numbers');
if (typeof arg1 !== 'number' || typeof arg2 !== 'number') throw new TypeError('Not a Number')
if (arg1 < 1 || arg2 < 1) throw new TypeError('Must be positive numbers')
// Make the order of coefficients correct, as the algorithm assumes r0 > r1
if (arg1 < arg2) {
const res = extendedEuclideanGCD(arg2,arg1)
const temp = res[1]
res[1] = res[2]
res[2] = temp
return res;
}
// Make the order of coefficients correct, as the algorithm assumes r0 > r1
if (arg1 < arg2) {
const res = extendedEuclideanGCD(arg2, arg1)
const temp = res[1]
res[1] = res[2]
res[2] = temp
return res
}
// At this point arg1 > arg2
// At this point arg1 > arg2
// Remainder values
let r0 = arg1
let r1 = arg2
// Remainder values
let r0 = arg1
let r1 = arg2
// Coefficient1 values
let s0 = 1
let s1 = 0
// Coefficient1 values
let s0 = 1
let s1 = 0
// Coefficient 2 values
let t0 = 0
let t1 = 1
while(r1 != 0) {
const q = Math.floor(r0 / r1);
// Coefficient 2 values
let t0 = 0
let t1 = 1
const r2 = r0 - r1*q;
const s2 = s0 - s1*q;
const t2 = t0 - t1*q;
r0 = r1
r1 = r2
s0 = s1
s1 = s2
t0 = t1
t1 = t2
}
return [r0,s0,t0];
while (r1 != 0) {
const q = Math.floor(r0 / r1)
const r2 = r0 - r1 * q
const s2 = s0 - s1 * q
const t2 = t0 - t1 * q
r0 = r1
r1 = r2
s0 = s1
s1 = s2
t0 = t1
t1 = t2
}
return [r0, s0, t0]
}
export { extendedEuclideanGCD };
export { extendedEuclideanGCD }
// ex

View File

@ -6,11 +6,11 @@ describe('extendedEuclideanGCD', () => {
expect(extendedEuclideanGCD(46, 240)).toMatchObject([2, 47, -9])
})
it('should give error on non-positive arguments', () => {
expect(() => extendedEuclideanGCD(0,240)).toThrowError(new TypeError('Must be positive numbers'))
expect(() => extendedEuclideanGCD(46,-240)).toThrowError(new TypeError('Must be positive numbers'))
expect(() => extendedEuclideanGCD(0, 240)).toThrowError(new TypeError('Must be positive numbers'))
expect(() => extendedEuclideanGCD(46, -240)).toThrowError(new TypeError('Must be positive numbers'))
})
it('should give error on non-numeric arguments', () => {
expect(() => extendedEuclideanGCD('240',46)).toThrowError(new TypeError('Not a Number'));
expect(() => extendedEuclideanGCD([240,46])).toThrowError(new TypeError('Not a Number'));
expect(() => extendedEuclideanGCD('240', 46)).toThrowError(new TypeError('Not a Number'))
expect(() => extendedEuclideanGCD([240, 46])).toThrowError(new TypeError('Not a Number'))
})
})