fix: refactor PrimMST and fix bug in PriorityQueue (#1300)

* ref: KeyPriorityQueue in separate  file #1298

* feat: add tests for KeyPriorityQueue #1298

* fix: _shiftDown refactored and corrected #1298

* fix: use KeyPriorityQueue in PrimMST #1298

* feat: add test for PrimMST #1298

* fix: format files #1298

* fix: minor coding style changes

* fix: use map for keys and priorities #1298
This commit is contained in:
paulinegarelli
2023-02-23 15:35:45 +01:00
committed by GitHub
parent 0c427580f1
commit 566d9103cd
4 changed files with 301 additions and 154 deletions

View File

@ -0,0 +1,153 @@
/**
* KeyPriorityQueue is a priority queue based on a Minimum Binary Heap.
*
* Minimum Binary Heaps are binary trees which are filled level by level
* and then from left to right inside a depth level.
* Their main property is that any parent node has a smaller or equal priority to all of its children,
* hence the root of the tree always has the smallest priority of all nodes.
*
* This implementation of the Minimum Binary Heap allows for nodes to be associated to both a key,
* which can be any datatype, and a priority.
*
* The heap is represented by an array with nodes ordered
* from root-to-leaf, left-to-right.
* Therefore, the parent-child node relationship is such that
* * the children nodes positions relative to their parent are: (parentPos * 2 + 1) and (parentPos * 2 + 2)
* * the parent node position relative to either of its children is: Math.floor((childPos - 1) / 2)
*
* More information and visuals on Binary Heaps can be found here: https://www.geeksforgeeks.org/binary-heap/
*/
// Priority Queue Helper functions
const getParentPosition = position => Math.floor((position - 1) / 2)
const getChildrenPositions = position => [2 * position + 1, 2 * position + 2]
class KeyPriorityQueue {
// Priority Queue class using Minimum Binary Heap
constructor () {
this._heap = []
this.priorities = new Map()
}
/**
* Checks if the heap is empty
* @returns boolean
*/
isEmpty () {
return this._heap.length === 0
}
/**
* Adds an element to the queue
* @param {*} key
* @param {number} priority
*/
push (key, priority) {
this._heap.push(key)
this.priorities.set(key, priority)
this._shiftUp(this._heap.length - 1)
}
/**
* Removes the element with least priority
* @returns the key of the element with least priority
*/
pop () {
this._swap(0, this._heap.length - 1)
const key = this._heap.pop()
this.priorities.delete(key)
this._shiftDown(0)
return key
}
/**
* Checks whether a given key is present in the queue
* @param {*} key
* @returns boolean
*/
contains (key) {
return this.priorities.has(key)
}
/**
* Updates the priority of the given element.
* Adds the element if it is not in the queue.
* @param {*} key the element to change
* @param {number} priority new priority of the element
*/
update (key, priority) {
const currPos = this._heap.indexOf(key)
// if the key does not exist yet, add it
if (currPos === -1) return this.push(key, priority)
// else update priority
this.priorities.set(key, priority)
const parentPos = getParentPosition(currPos)
const currPriority = this._getPriorityOrInfinite(currPos)
const parentPriority = this._getPriorityOrInfinite(parentPos)
const [child1Pos, child2Pos] = getChildrenPositions(currPos)
const child1Priority = this._getPriorityOrInfinite(child1Pos)
const child2Priority = this._getPriorityOrInfinite(child2Pos)
if (parentPos >= 0 && parentPriority > currPriority) {
this._shiftUp(currPos)
} else if (child1Priority < currPriority || child2Priority < currPriority) {
this._shiftDown(currPos)
}
}
_getPriorityOrInfinite (position) {
// Helper function, returns priority of the node, or Infinite if no node corresponds to this position
if (position >= 0 && position < this._heap.length) return this.priorities.get(this._heap[position])
else return Infinity
}
_shiftUp (position) {
// Helper function to shift up a node to proper position (equivalent to bubbleUp)
let currPos = position
let parentPos = getParentPosition(currPos)
let currPriority = this._getPriorityOrInfinite(currPos)
let parentPriority = this._getPriorityOrInfinite(parentPos)
while (parentPos >= 0 && parentPriority > currPriority) {
this._swap(currPos, parentPos)
currPos = parentPos
parentPos = getParentPosition(currPos)
currPriority = this._getPriorityOrInfinite(currPos)
parentPriority = this._getPriorityOrInfinite(parentPos)
}
}
_shiftDown (position) {
// Helper function to shift down a node to proper position (equivalent to bubbleDown)
let currPos = position
let [child1Pos, child2Pos] = getChildrenPositions(currPos)
let child1Priority = this._getPriorityOrInfinite(child1Pos)
let child2Priority = this._getPriorityOrInfinite(child2Pos)
let currPriority = this._getPriorityOrInfinite(currPos)
if (currPriority === Infinity) {
return
}
while (child1Priority < currPriority || child2Priority < currPriority) {
if (child1Priority < currPriority && child1Priority < child2Priority) {
this._swap(child1Pos, currPos)
currPos = child1Pos
} else {
this._swap(child2Pos, currPos)
currPos = child2Pos
}
[child1Pos, child2Pos] = getChildrenPositions(currPos)
child1Priority = this._getPriorityOrInfinite(child1Pos)
child2Priority = this._getPriorityOrInfinite(child2Pos)
currPriority = this._getPriorityOrInfinite(currPos)
}
}
_swap (position1, position2) {
// Helper function to swap 2 nodes
[this._heap[position1], this._heap[position2]] = [this._heap[position2], this._heap[position1]]
}
}
export { KeyPriorityQueue }

View File

@ -0,0 +1,126 @@
import { KeyPriorityQueue } from '../KeyPriorityQueue.js'
describe('Key Priority Queue', () => {
describe('Method isEmpty', () => {
test('Check heap is empty', () => {
const queue = new KeyPriorityQueue()
const res = queue.isEmpty()
expect(res).toEqual(true)
})
test('Check heap is not empty', () => {
const queue = new KeyPriorityQueue()
queue.push(0, 2)
const res = queue.isEmpty()
expect(res).toEqual(false)
})
})
describe('Methods push and pop', () => {
test('Test Case 1', () => {
// create queue
const queue = new KeyPriorityQueue()
queue.push(0, 3)
queue.push(1, 7)
queue.push(2, 9)
queue.push(3, 13)
// create expected queue
const expectedQueue = new KeyPriorityQueue()
expectedQueue.push(1, 7)
expectedQueue.push(3, 13)
expectedQueue.push(2, 9)
// result from popping element from the queue
queue.pop()
expect(queue).toEqual(expectedQueue)
})
test('Test Case 2', () => {
// create queue
const queue = new KeyPriorityQueue()
queue.push(0, 3)
queue.push(1, 9)
queue.push(2, 7)
queue.push(3, 13)
// create expected queue
const expectedQueue = new KeyPriorityQueue()
expectedQueue.push(2, 7)
expectedQueue.push(1, 9)
expectedQueue.push(3, 13)
// result from popping element from the queue
queue.pop()
expect(queue).toEqual(expectedQueue)
})
test('Test Case 3', () => {
// create queue
const queue = new KeyPriorityQueue()
queue.push(0, 3)
queue.push(1, 7)
queue.push(2, 9)
queue.push(3, 12)
queue.push(4, 13)
// create expected queue
const expectedQueue = new KeyPriorityQueue()
expectedQueue.push(1, 7)
expectedQueue.push(3, 12)
expectedQueue.push(2, 9)
expectedQueue.push(4, 13)
// result from popping element from the queue
queue.pop()
expect(queue).toEqual(expectedQueue)
})
})
describe('Method contains', () => {
test('Check heap does not contain element', () => {
const queue = new KeyPriorityQueue()
const res = queue.contains(0)
expect(res).toEqual(false)
})
test('Check heap contains element', () => {
const queue = new KeyPriorityQueue()
queue.push(0, 2)
const res = queue.contains(0)
expect(res).toEqual(true)
})
})
describe('Method update', () => {
test('Update without change in position', () => {
// create queue
const queue = new KeyPriorityQueue()
queue.push(0, 3)
queue.push(1, 5)
queue.push(2, 7)
queue.push(3, 11)
// create expected queue
const expectedQueue = new KeyPriorityQueue()
expectedQueue.push(0, 2)
expectedQueue.push(1, 5)
expectedQueue.push(2, 7)
expectedQueue.push(3, 11)
// result from updating to similar priority
queue.update(0, 2)
expect(queue).toEqual(expectedQueue)
})
test('Update with change in position', () => {
// create queue
const queue = new KeyPriorityQueue()
queue.push(0, 3)
queue.push(1, 5)
queue.push(2, 7)
queue.push(3, 11)
// create expected queue
const expectedQueue = new KeyPriorityQueue()
expectedQueue.push(1, 5)
expectedQueue.push(3, 11)
expectedQueue.push(2, 7)
expectedQueue.push(0, 9)
// result from updating to similar priority
queue.update(0, 9)
expect(queue).toEqual(expectedQueue)
})
})
})

View File

@ -1,148 +1,4 @@
// Priority Queue Helper functions
function getParentPosition (position) {
// Get the parent node of the current node
return Math.floor((position - 1) / 2)
}
function getChildrenPosition (position) {
// Get the children nodes of the current node
return [2 * position + 1, 2 * position + 2]
}
class PriorityQueue {
// Priority Queue class using Minimum Binary Heap
constructor () {
this._heap = []
this.keys = {}
}
isEmpty () {
// Checking if the heap is empty
return this._heap.length === 0
}
push (key, priority) {
// Adding element to the queue (equivalent to add)
this._heap.push([key, priority])
this.keys[key] = this._heap.length - 1
this._shiftUp(this.keys[key])
}
pop () {
// Removing the element with least priority (equivalent to extractMin)
this._swap(0, this._heap.length - 1)
const [key] = this._heap.pop()
delete this.keys[key]
this._shiftDown(0)
return key
}
contains (key) {
// Check if a given key is present in the queue
return (key in this.keys)
}
update (key, priority) {
// Update the priority of the given element (equivalent to decreaseKey)
const currPos = this.keys[key]
this._heap[currPos][1] = priority
const parentPos = getParentPosition(currPos)
const currPriority = this._heap[currPos][1]
let parentPriority = Infinity
if (parentPos >= 0) {
parentPriority = this._heap[parentPos][1]
}
const [child1Pos, child2Pos] = getChildrenPosition(currPos)
let [child1Priority, child2Priority] = [Infinity, Infinity]
if (child1Pos < this._heap.length) {
child1Priority = this._heap[child1Pos][1]
}
if (child2Pos < this._heap.length) {
child2Priority = this._heap[child2Pos][1]
}
if (parentPos >= 0 && parentPriority > currPriority) {
this._shiftUp(currPos)
} else if (child2Pos < this._heap.length &&
(child1Priority < currPriority || child2Priority < currPriority)) {
this._shiftDown(currPos)
}
}
_shiftUp (position) {
// Helper function to shift up a node to proper position (equivalent to bubbleUp)
let currPos = position
let parentPos = getParentPosition(currPos)
let currPriority = this._heap[currPos][1]
let parentPriority = Infinity
if (parentPos >= 0) {
parentPriority = this._heap[parentPos][1]
}
while (parentPos >= 0 && parentPriority > currPriority) {
this._swap(currPos, parentPos)
currPos = parentPos
parentPos = getParentPosition(currPos)
currPriority = this._heap[currPos][1]
try {
parentPriority = this._heap[parentPos][1]
} catch (error) {
parentPriority = Infinity
}
}
this.keys[this._heap[currPos][0]] = currPos
}
_shiftDown (position) {
// Helper function to shift down a node to proper position (equivalent to bubbleDown)
let currPos = position
let [child1Pos, child2Pos] = getChildrenPosition(currPos)
let [child1Priority, child2Priority] = [Infinity, Infinity]
if (child1Pos < this._heap.length) {
child1Priority = this._heap[child1Pos][1]
}
if (child2Pos < this._heap.length) {
child2Priority = this._heap[child2Pos][1]
}
let currPriority
try {
currPriority = this._heap[currPos][1]
} catch {
return
}
while (child2Pos < this._heap.length &&
(child1Priority < currPriority || child2Priority < currPriority)) {
if (child1Priority < currPriority && child1Priority < child2Priority) {
this._swap(child1Pos, currPos)
currPos = child1Pos
} else {
this._swap(child2Pos, currPos)
currPos = child2Pos
}
[child1Pos, child2Pos] = getChildrenPosition(currPos)
try {
[child1Priority, child2Priority] = [this._heap[child1Pos][1], this._heap[child2Pos][1]]
} catch (error) {
[child1Priority, child2Priority] = [Infinity, Infinity]
}
currPriority = this._heap[currPos][1]
}
this.keys[this._heap[currPos][0]] = currPos
if (child1Pos < this._heap.length && child1Priority < currPriority) {
this._swap(child1Pos, currPos)
this.keys[this._heap[child1Pos][0]] = child1Pos
}
}
_swap (position1, position2) {
// Helper function to swap 2 nodes
[this._heap[position1], this._heap[position2]] = [this._heap[position2], this._heap[position1]]
this.keys[this._heap[position1][0]] = position1
this.keys[this._heap[position2][0]] = position2
}
}
import { KeyPriorityQueue } from '../Data-Structures/Heap/KeyPriorityQueue'
class GraphWeightedUndirectedAdjacencyList {
// Weighted Undirected Graph class
constructor () {
@ -167,7 +23,7 @@ class GraphWeightedUndirectedAdjacencyList {
// Details: https://en.wikipedia.org/wiki/Prim%27s_algorithm
const distance = {}
const parent = {}
const priorityQueue = new PriorityQueue()
const priorityQueue = new KeyPriorityQueue()
// Initialization
for (const node in this.connections) {
distance[node] = (node === start.toString() ? 0 : Infinity)
@ -198,11 +54,3 @@ class GraphWeightedUndirectedAdjacencyList {
}
export { GraphWeightedUndirectedAdjacencyList }
// const graph = new GraphWeightedUndirectedAdjacencyList()
// graph.addEdge(1, 2, 1)
// graph.addEdge(2, 3, 2)
// graph.addEdge(3, 4, 1)
// graph.addEdge(3, 5, 100) // Removed in MST
// graph.addEdge(4, 5, 5)
// graph.PrimMST(1)

View File

@ -0,0 +1,20 @@
import { GraphWeightedUndirectedAdjacencyList } from '../PrimMST.js'
test('Test Case PrimMST 1', () => {
// create graph to compute MST on
const graph = new GraphWeightedUndirectedAdjacencyList()
graph.addEdge(1, 2, 1)
graph.addEdge(2, 3, 2)
graph.addEdge(3, 4, 1)
graph.addEdge(3, 5, 100) // Removed in MST
graph.addEdge(4, 5, 5)
// create expected graph
const expectedGraph = new GraphWeightedUndirectedAdjacencyList()
expectedGraph.addEdge(1, 2, 1)
expectedGraph.addEdge(2, 3, 2)
expectedGraph.addEdge(3, 4, 1)
expectedGraph.addEdge(4, 5, 5)
// result from MST
const res = graph.PrimMST(1)
expect(res).toEqual(expectedGraph)
})