mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 00:01:37 +08:00
merge: Add project-euler problem 12 (#767)
* Add project-euler problem 12 * Fix raised alert in problem 12 * Fixed for loop in Problem012 * fix alerts in Problem012 * Update Problem012
This commit is contained in:
@ -210,6 +210,7 @@
|
||||
* [Problem008](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem008.js)
|
||||
* [Problem009](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem009.js)
|
||||
* [Problem010](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem010.js)
|
||||
* [Problem012](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem012.js)
|
||||
* [Problem014](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem014.js)
|
||||
* [Problem015](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem015.js)
|
||||
* [Problem016](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem016.js)
|
||||
|
64
Project-Euler/Problem012.js
Normal file
64
Project-Euler/Problem012.js
Normal file
@ -0,0 +1,64 @@
|
||||
/**
|
||||
* Problem 12 - Highly divisible triangular number
|
||||
*
|
||||
* https://projecteuler.net/problem=11
|
||||
*
|
||||
* The sequence of triangle numbers is generated by adding the natural numbers.
|
||||
* So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.
|
||||
*
|
||||
* The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
* Let us list the factors of the first seven triangle numbers:
|
||||
*
|
||||
* 1: 1
|
||||
* 3: 1,3
|
||||
* 6: 1,2,3,6
|
||||
* 10: 1,2,5,10
|
||||
* 15: 1,3,5,15
|
||||
* 21: 1,3,7,21
|
||||
* 28: 1,2,4,7,14,28
|
||||
*
|
||||
* We can see that 28 is the first triangle number to have over five divisors.
|
||||
*
|
||||
* What is the value of the first triangle number to have over five hundred divisors?
|
||||
*/
|
||||
|
||||
/**
|
||||
* Gets number of divisors of a given number
|
||||
* @params num The number whose divisors to find
|
||||
*/
|
||||
const getNumOfDivisors = (num) => {
|
||||
// initialize numberOfDivisors
|
||||
let numberOfDivisors = 0
|
||||
|
||||
// if one divisor less than sqrt(num) exists
|
||||
// then another divisor greater than sqrt(n) exists and its value is num/i
|
||||
const sqrtNum = Math.sqrt(num)
|
||||
for (let i = 0; i <= sqrtNum; i++) {
|
||||
// check if i divides num
|
||||
if (num % i === 0) {
|
||||
if (i === sqrtNum) {
|
||||
// if both divisors are equal, i.e., num is perfect square, then only 1 divisor
|
||||
numberOfDivisors++
|
||||
} else {
|
||||
// 2 divisors, one of them is less than sqrt(n), other greater than sqrt(n)
|
||||
numberOfDivisors += 2
|
||||
}
|
||||
}
|
||||
}
|
||||
return numberOfDivisors
|
||||
}
|
||||
|
||||
/**
|
||||
* Loops till first triangular number with 500 divisors is found
|
||||
*/
|
||||
const firstTriangularWith500Divisors = () => {
|
||||
let triangularNum
|
||||
// loop forever until numOfDivisors becomes greater than or equal to 500
|
||||
for (let n = 1; ; n++) {
|
||||
// nth triangular number is (1/2)*n*(n+1) by Arithmetic Progression
|
||||
triangularNum = (1 / 2) * n * (n + 1)
|
||||
if (getNumOfDivisors(triangularNum) >= 500) return triangularNum
|
||||
}
|
||||
}
|
||||
|
||||
export { firstTriangularWith500Divisors }
|
8
Project-Euler/test/Problem012.test.js
Normal file
8
Project-Euler/test/Problem012.test.js
Normal file
@ -0,0 +1,8 @@
|
||||
import { firstTriangularWith500Divisors } from '../Problem012'
|
||||
|
||||
describe('checkFirstTriangularWith500Divisors()', () => {
|
||||
it('Problem Statement Answer', () => {
|
||||
const firstTriangular = firstTriangularWith500Divisors()
|
||||
expect(firstTriangular).toBe(76576500)
|
||||
})
|
||||
})
|
Reference in New Issue
Block a user