Fibonacci.js overhaul (#1049)

This commit is contained in:
Ricardo Fernández Serrata
2022-06-27 00:39:54 -04:00
committed by GitHub
parent 95a8ec08ed
commit 1b64ba68fa
2 changed files with 148 additions and 51 deletions

View File

@ -1,51 +1,67 @@
const list = []
// https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Extension_to_negative_integers
const FibonacciIterative = (num) => {
const isNeg = num < 0
if (isNeg) num *= -1
const sequence = [0]
const FibonacciIterative = (nth) => {
const sequence = []
if (num >= 1) sequence.push(1)
if (num >= 2) sequence.push(isNeg ? -1 : 1)
if (nth >= 1) sequence.push(1)
if (nth >= 2) sequence.push(1)
for (let i = 2; i < nth; i++) {
sequence.push(sequence[i - 1] + sequence[i - 2])
for (let i = 2; i < num; i++) {
sequence.push(
isNeg ? sequence[i - 1] - sequence[i] : sequence[i] + sequence[i - 1]
)
}
return sequence
}
const FibonacciRecursive = (number) => {
const FibonacciGenerator = function * (neg) {
let a = 0
let b = 1
yield a
while (true) {
yield b;
[a, b] = neg ? [b, a - b] : [b, a + b]
}
}
const list = []
const FibonacciRecursive = (num) => {
const isNeg = num < 0
if (isNeg) num *= -1
return (() => {
switch (list.length) {
case 0:
list.push(1)
return FibonacciRecursive(number)
list.push(0)
return FibonacciRecursive(num)
case 1:
list.push(1)
return FibonacciRecursive(number)
case number:
return FibonacciRecursive(num)
case num + 1:
return list
default:
list.push(list[list.length - 1] + list[list.length - 2])
return FibonacciRecursive(number)
list.push(list.at(-1) + list.at(-2))
return FibonacciRecursive(num)
}
})()
})().map((fib, i) => fib * (isNeg ? (-1) ** (i + 1) : 1))
}
const dict = new Map()
const FibonacciRecursiveDP = (stairs) => {
if (stairs <= 0) return 0
if (stairs === 1) return 1
const isNeg = stairs < 0
if (isNeg) stairs *= -1
if (stairs <= 1) return stairs
// Memoize stair count
if (dict.has(stairs)) return dict.get(stairs)
if (dict.has(stairs)) return (isNeg ? (-1) ** (stairs + 1) : 1) * dict.get(stairs)
const res =
FibonacciRecursiveDP(stairs - 1) + FibonacciRecursiveDP(stairs - 2)
const res = FibonacciRecursiveDP(stairs - 1) + FibonacciRecursiveDP(stairs - 2)
dict.set(stairs, res)
return res
return (isNeg ? (-1) ** (stairs + 1) : 1) * res
}
// Algorithms
@ -59,12 +75,16 @@ const FibonacciRecursiveDP = (stairs) => {
// a function of the number of input bits
// @Satzyakiz
const FibonacciDpWithoutRecursion = (number) => {
const table = []
const FibonacciDpWithoutRecursion = (num) => {
const isNeg = num < 0
if (isNeg) num *= -1
const table = [0]
table.push(1)
table.push(1)
for (let i = 2; i < number; ++i) {
table.push(table[i - 1] + table[i - 2])
table.push(isNeg ? -1 : 1)
for (let i = 2; i < num; ++i) {
table.push(
isNeg ? table[i - 1] - table[i] : table[i] + table[i - 1]
)
}
return table
}
@ -76,24 +96,31 @@ const copyMatrix = (A) => {
}
const Identity = (size) => {
const isBigInt = typeof size === 'bigint'
const ZERO = isBigInt ? 0n : 0
const ONE = isBigInt ? 1n : 1
size = Number(size)
const I = Array(size).fill(null).map(() => Array(size).fill())
return I.map((row, rowIdx) => row.map((_col, colIdx) => {
return rowIdx === colIdx ? 1 : 0
return rowIdx === colIdx ? ONE : ZERO
}))
}
// A of size (l x m) and B of size (m x n)
// product C will be of size (l x n)
// product C will be of size (l x n).
// both matrices must have same-type numeric values
// either both BigInt or both Number
const matrixMultiply = (A, B) => {
A = copyMatrix(A)
B = copyMatrix(B)
const isBigInt = typeof A[0][0] === 'bigint'
const l = A.length
const m = B.length
const n = B[0].length // Assuming non-empty matrices
const C = Array(l).fill(null).map(() => Array(n).fill())
for (let i = 0; i < l; i++) {
for (let j = 0; j < n; j++) {
C[i][j] = 0
C[i][j] = isBigInt ? 0n : 0
for (let k = 0; k < m; k++) {
C[i][j] += A[i][k] * B[k][j]
}
@ -110,18 +137,25 @@ const matrixMultiply = (A, B) => {
// A is a square matrix
const matrixExpo = (A, n) => {
A = copyMatrix(A)
const isBigInt = typeof n === 'bigint'
const ZERO = isBigInt ? 0n : 0
const TWO = isBigInt ? 2n : 2
// Just like Binary exponentiation mentioned in ./BinaryExponentiationIterative.js
let result = Identity(A.length) // Identity matrix
while (n > 0) {
if (n % 2 !== 0) result = matrixMultiply(result, A)
n = Math.floor(n / 2)
if (n > 0) A = matrixMultiply(A, A)
let result = Identity((isBigInt ? BigInt : Number)(A.length)) // Identity matrix
while (n > ZERO) {
if (n % TWO !== ZERO) result = matrixMultiply(result, A)
n /= TWO
if (!isBigInt) n = Math.floor(n)
if (n > ZERO) A = matrixMultiply(A, A)
}
return result
}
const FibonacciMatrixExpo = (n) => {
const FibonacciMatrixExpo = (num) => {
const isBigInt = typeof num === 'bigint'
const ZERO = isBigInt ? 0n : 0
const ONE = isBigInt ? 1n : 1
// F(0) = 0, F(1) = 1
// F(n) = F(n-1) + F(n-2)
// Consider below matrix multiplication:
@ -134,23 +168,28 @@ const FibonacciMatrixExpo = (n) => {
// or F(n, n-1) = A * A * F(n-2, n-3)
// or F(n, n-1) = pow(A, n-1) * F(1, 0)
if (n === 0) return 0
if (num === ZERO) return num
const isNeg = num < 0
if (isNeg) num *= -ONE
const A = [
[1, 1],
[1, 0]
[ONE, ONE],
[ONE, ZERO]
]
const poweredA = matrixExpo(A, n - 1) // A raised to the power n-1
const poweredA = matrixExpo(A, num - ONE) // A raised to the power n-1
let F = [
[1],
[0]
[ONE],
[ZERO]
]
F = matrixMultiply(poweredA, F)
return F[0][0]
return F[0][0] * (isNeg ? (-ONE) ** (num + ONE) : ONE)
}
export { FibonacciDpWithoutRecursion }
export { FibonacciIterative }
export { FibonacciGenerator }
export { FibonacciRecursive }
export { FibonacciRecursiveDP }
export { FibonacciMatrixExpo }

View File

@ -2,30 +2,61 @@ import {
FibonacciDpWithoutRecursion,
FibonacciRecursiveDP,
FibonacciIterative,
FibonacciGenerator,
FibonacciRecursive,
FibonacciMatrixExpo
} from '../Fibonacci'
describe('Fibonacci', () => {
it('should return an array of numbers for FibonacciIterative', () => {
expect(FibonacciIterative(5)).toEqual(
expect.arrayContaining([1, 1, 2, 3, 5])
expect(FibonacciIterative(6)).toEqual(
expect.arrayContaining([0, 1, 1, 2, 3, 5, 8])
)
expect(FibonacciIterative(-6)).toEqual(
expect.arrayContaining([0, 1, -1, 2, -3, 5, -8])
)
})
it('should return number for FibonacciGenerator', () => {
const positive = FibonacciGenerator()
expect(positive.next().value).toBe(0)
expect(positive.next().value).toBe(1)
expect(positive.next().value).toBe(1)
expect(positive.next().value).toBe(2)
expect(positive.next().value).toBe(3)
expect(positive.next().value).toBe(5)
expect(positive.next().value).toBe(8)
const negative = FibonacciGenerator(true)
expect(negative.next().value).toBe(0)
expect(negative.next().value).toBe(1)
expect(negative.next().value).toBe(-1)
expect(negative.next().value).toBe(2)
expect(negative.next().value).toBe(-3)
expect(negative.next().value).toBe(5)
expect(negative.next().value).toBe(-8)
})
it('should return an array of numbers for FibonacciRecursive', () => {
expect(FibonacciRecursive(5)).toEqual(
expect.arrayContaining([1, 1, 2, 3, 5])
expect(FibonacciRecursive(6)).toEqual(
expect.arrayContaining([0, 1, 1, 2, 3, 5, 8])
)
expect(FibonacciRecursive(-6)).toEqual(
expect.arrayContaining([-0, 1, -1, 2, -3, 5, -8])
)
})
it('should return number for FibonacciRecursiveDP', () => {
expect(FibonacciRecursiveDP(5)).toBe(5)
expect(FibonacciRecursiveDP(6)).toBe(8)
expect(FibonacciRecursiveDP(-6)).toBe(-8)
})
it('should return an array of numbers for FibonacciDpWithoutRecursion', () => {
expect(FibonacciDpWithoutRecursion(5)).toEqual(
expect.arrayContaining([1, 1, 2, 3, 5])
expect(FibonacciDpWithoutRecursion(6)).toEqual(
expect.arrayContaining([0, 1, 1, 2, 3, 5, 8])
)
expect(FibonacciDpWithoutRecursion(-6)).toEqual(
expect.arrayContaining([0, 1, -1, 2, -3, 5, -8])
)
})
@ -36,5 +67,32 @@ describe('Fibonacci', () => {
expect(FibonacciMatrixExpo(3)).toBe(2)
expect(FibonacciMatrixExpo(4)).toBe(3)
expect(FibonacciMatrixExpo(5)).toBe(5)
expect(FibonacciMatrixExpo(6)).toBe(8)
expect(FibonacciMatrixExpo(-0)).toBe(-0)
expect(FibonacciMatrixExpo(-1)).toBe(1)
expect(FibonacciMatrixExpo(-2)).toBe(-1)
expect(FibonacciMatrixExpo(-3)).toBe(2)
expect(FibonacciMatrixExpo(-4)).toBe(-3)
expect(FibonacciMatrixExpo(-5)).toBe(5)
expect(FibonacciMatrixExpo(-6)).toBe(-8)
})
it('should return bigint for FibonacciMatrixExpo', () => {
expect(FibonacciMatrixExpo(0n)).toBe(0n)
expect(FibonacciMatrixExpo(1n)).toBe(1n)
expect(FibonacciMatrixExpo(2n)).toBe(1n)
expect(FibonacciMatrixExpo(3n)).toBe(2n)
expect(FibonacciMatrixExpo(4n)).toBe(3n)
expect(FibonacciMatrixExpo(5n)).toBe(5n)
expect(FibonacciMatrixExpo(6n)).toBe(8n)
expect(FibonacciMatrixExpo(-0n)).toBe(0n)
expect(FibonacciMatrixExpo(-1n)).toBe(1n)
expect(FibonacciMatrixExpo(-2n)).toBe(-1n)
expect(FibonacciMatrixExpo(-3n)).toBe(2n)
expect(FibonacciMatrixExpo(-4n)).toBe(-3n)
expect(FibonacciMatrixExpo(-5n)).toBe(5n)
expect(FibonacciMatrixExpo(-6n)).toBe(-8n)
})
})