mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
104 lines
3.0 KiB
Java
104 lines
3.0 KiB
Java
package com.thealgorithms.matrix;
|
|
|
|
/**
|
|
* This class provides methods to compute the inverse of a square matrix
|
|
* using Gaussian elimination. For more details, refer to:
|
|
* https://en.wikipedia.org/wiki/Invertible_matrix
|
|
*/
|
|
public final class InverseOfMatrix {
|
|
private InverseOfMatrix() {
|
|
}
|
|
|
|
public static double[][] invert(double[][] a) {
|
|
int n = a.length;
|
|
double[][] x = new double[n][n];
|
|
double[][] b = new double[n][n];
|
|
int[] index = new int[n];
|
|
|
|
// Initialize the identity matrix
|
|
for (int i = 0; i < n; ++i) {
|
|
b[i][i] = 1;
|
|
}
|
|
|
|
// Perform Gaussian elimination
|
|
gaussian(a, index);
|
|
|
|
// Update matrix b with the ratios stored during elimination
|
|
for (int i = 0; i < n - 1; ++i) {
|
|
for (int j = i + 1; j < n; ++j) {
|
|
for (int k = 0; k < n; ++k) {
|
|
b[index[j]][k] -= a[index[j]][i] * b[index[i]][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform backward substitution to find the inverse
|
|
for (int i = 0; i < n; ++i) {
|
|
x[n - 1][i] = b[index[n - 1]][i] / a[index[n - 1]][n - 1];
|
|
for (int j = n - 2; j >= 0; --j) {
|
|
x[j][i] = b[index[j]][i];
|
|
for (int k = j + 1; k < n; ++k) {
|
|
x[j][i] -= a[index[j]][k] * x[k][i];
|
|
}
|
|
x[j][i] /= a[index[j]][j];
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
/**
|
|
* Method to carry out the partial-pivoting Gaussian
|
|
* elimination. Here index[] stores pivoting order.
|
|
**/
|
|
private static void gaussian(double[][] a, int[] index) {
|
|
int n = index.length;
|
|
double[] c = new double[n];
|
|
|
|
// Initialize the index array
|
|
for (int i = 0; i < n; ++i) {
|
|
index[i] = i;
|
|
}
|
|
|
|
// Find the rescaling factors for each row
|
|
for (int i = 0; i < n; ++i) {
|
|
double c1 = 0;
|
|
for (int j = 0; j < n; ++j) {
|
|
double c0 = Math.abs(a[i][j]);
|
|
if (c0 > c1) {
|
|
c1 = c0;
|
|
}
|
|
}
|
|
c[i] = c1;
|
|
}
|
|
|
|
// Perform pivoting
|
|
for (int j = 0; j < n - 1; ++j) {
|
|
double pi1 = 0;
|
|
int k = j;
|
|
for (int i = j; i < n; ++i) {
|
|
double pi0 = Math.abs(a[index[i]][j]) / c[index[i]];
|
|
if (pi0 > pi1) {
|
|
pi1 = pi0;
|
|
k = i;
|
|
}
|
|
}
|
|
|
|
// Swap rows
|
|
int temp = index[j];
|
|
index[j] = index[k];
|
|
index[k] = temp;
|
|
|
|
for (int i = j + 1; i < n; ++i) {
|
|
double pj = a[index[i]][j] / a[index[j]][j];
|
|
|
|
// Record pivoting ratios below the diagonal
|
|
a[index[i]][j] = pj;
|
|
|
|
// Modify other elements accordingly
|
|
for (int l = j + 1; l < n; ++l) {
|
|
a[index[i]][l] -= pj * a[index[j]][l];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|