package com.thealgorithms.matrix; /** * This class provides methods to compute the inverse of a square matrix * using Gaussian elimination. For more details, refer to: * https://en.wikipedia.org/wiki/Invertible_matrix */ public final class InverseOfMatrix { private InverseOfMatrix() { } public static double[][] invert(double[][] a) { int n = a.length; double[][] x = new double[n][n]; double[][] b = new double[n][n]; int[] index = new int[n]; // Initialize the identity matrix for (int i = 0; i < n; ++i) { b[i][i] = 1; } // Perform Gaussian elimination gaussian(a, index); // Update matrix b with the ratios stored during elimination for (int i = 0; i < n - 1; ++i) { for (int j = i + 1; j < n; ++j) { for (int k = 0; k < n; ++k) { b[index[j]][k] -= a[index[j]][i] * b[index[i]][k]; } } } // Perform backward substitution to find the inverse for (int i = 0; i < n; ++i) { x[n - 1][i] = b[index[n - 1]][i] / a[index[n - 1]][n - 1]; for (int j = n - 2; j >= 0; --j) { x[j][i] = b[index[j]][i]; for (int k = j + 1; k < n; ++k) { x[j][i] -= a[index[j]][k] * x[k][i]; } x[j][i] /= a[index[j]][j]; } } return x; } /** * Method to carry out the partial-pivoting Gaussian * elimination. Here index[] stores pivoting order. **/ private static void gaussian(double[][] a, int[] index) { int n = index.length; double[] c = new double[n]; // Initialize the index array for (int i = 0; i < n; ++i) { index[i] = i; } // Find the rescaling factors for each row for (int i = 0; i < n; ++i) { double c1 = 0; for (int j = 0; j < n; ++j) { double c0 = Math.abs(a[i][j]); if (c0 > c1) { c1 = c0; } } c[i] = c1; } // Perform pivoting for (int j = 0; j < n - 1; ++j) { double pi1 = 0; int k = j; for (int i = j; i < n; ++i) { double pi0 = Math.abs(a[index[i]][j]) / c[index[i]]; if (pi0 > pi1) { pi1 = pi0; k = i; } } // Swap rows int temp = index[j]; index[j] = index[k]; index[k] = temp; for (int i = j + 1; i < n; ++i) { double pj = a[index[i]][j] / a[index[j]][j]; // Record pivoting ratios below the diagonal a[index[i]][j] = pj; // Modify other elements accordingly for (int l = j + 1; l < n; ++l) { a[index[i]][l] -= pj * a[index[j]][l]; } } } } }