Files
Java/src/test/java/com/thealgorithms/graph/EdmondsTest.java
Microindole 8b8434cb51 feat(graph): Add Edmonds's algorithm for minimum spanning arborescence (#6771)
* feat(graph): Add Edmonds's algorithm for minimum spanning arborescence

* test: Add test cases to achieve 100% coverage
2025-10-13 15:47:50 +03:00

173 lines
6.1 KiB
Java

package com.thealgorithms.graph;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import java.util.ArrayList;
import java.util.List;
import org.junit.jupiter.api.Test;
class EdmondsTest {
@Test
void testSimpleGraphNoCycle() {
int n = 4;
int root = 0;
List<Edmonds.Edge> edges = new ArrayList<>();
edges.add(new Edmonds.Edge(0, 1, 10));
edges.add(new Edmonds.Edge(0, 2, 1));
edges.add(new Edmonds.Edge(2, 1, 2));
edges.add(new Edmonds.Edge(2, 3, 5));
// Expected arborescence edges: (0,2), (2,1), (2,3)
// Weights: 1 + 2 + 5 = 8
long result = Edmonds.findMinimumSpanningArborescence(n, edges, root);
assertEquals(8, result);
}
@Test
void testGraphWithOneCycle() {
int n = 4;
int root = 0;
List<Edmonds.Edge> edges = new ArrayList<>();
edges.add(new Edmonds.Edge(0, 1, 10));
edges.add(new Edmonds.Edge(2, 1, 4));
edges.add(new Edmonds.Edge(1, 2, 5));
edges.add(new Edmonds.Edge(2, 3, 6));
// Min edges: (2,1, w=4), (1,2, w=5), (2,3, w=6)
// Cycle: 1 -> 2 -> 1, cost = 4 + 5 = 9
// Contract {1,2} to C.
// New edge (0,C) with w = 10 - min_in(1) = 10 - 4 = 6
// New edge (C,3) with w = 6
// Contracted MSA cost = 6 + 6 = 12
// Total cost = cycle_cost + contracted_msa_cost = 9 + 12 = 21
long result = Edmonds.findMinimumSpanningArborescence(n, edges, root);
assertEquals(21, result);
}
@Test
void testComplexGraphWithCycle() {
int n = 6;
int root = 0;
List<Edmonds.Edge> edges = new ArrayList<>();
edges.add(new Edmonds.Edge(0, 1, 10));
edges.add(new Edmonds.Edge(0, 2, 20));
edges.add(new Edmonds.Edge(1, 2, 5));
edges.add(new Edmonds.Edge(2, 3, 10));
edges.add(new Edmonds.Edge(3, 1, 3));
edges.add(new Edmonds.Edge(1, 4, 7));
edges.add(new Edmonds.Edge(3, 4, 2));
edges.add(new Edmonds.Edge(4, 5, 5));
// Min edges: (3,1,3), (1,2,5), (2,3,10), (3,4,2), (4,5,5)
// Cycle: 1->2->3->1, cost = 5+10+3=18
// Contract {1,2,3} to C.
// Edge (0,1,10) -> (0,C), w = 10-3=7
// Edge (0,2,20) -> (0,C), w = 20-5=15. Min is 7.
// Edge (1,4,7) -> (C,4,7)
// Edge (3,4,2) -> (C,4,2). Min is 2.
// Edge (4,5,5) -> (4,5,5)
// Contracted MSA: (0,C,7), (C,4,2), (4,5,5). Cost = 7+2+5=14
// Total cost = 18 + 14 = 32
long result = Edmonds.findMinimumSpanningArborescence(n, edges, root);
assertEquals(32, result);
}
@Test
void testUnreachableNode() {
int n = 4;
int root = 0;
List<Edmonds.Edge> edges = new ArrayList<>();
edges.add(new Edmonds.Edge(0, 1, 10));
edges.add(new Edmonds.Edge(2, 3, 5)); // Node 2 and 3 are unreachable from root 0
long result = Edmonds.findMinimumSpanningArborescence(n, edges, root);
assertEquals(-1, result);
}
@Test
void testNoEdgesToNonRootNodes() {
int n = 3;
int root = 0;
List<Edmonds.Edge> edges = new ArrayList<>();
edges.add(new Edmonds.Edge(0, 1, 10)); // Node 2 is unreachable
long result = Edmonds.findMinimumSpanningArborescence(n, edges, root);
assertEquals(-1, result);
}
@Test
void testSingleNode() {
int n = 1;
int root = 0;
List<Edmonds.Edge> edges = new ArrayList<>();
long result = Edmonds.findMinimumSpanningArborescence(n, edges, root);
assertEquals(0, result);
}
@Test
void testInvalidInputThrowsException() {
List<Edmonds.Edge> edges = new ArrayList<>();
assertThrows(IllegalArgumentException.class, () -> Edmonds.findMinimumSpanningArborescence(0, edges, 0));
assertThrows(IllegalArgumentException.class, () -> Edmonds.findMinimumSpanningArborescence(5, edges, -1));
assertThrows(IllegalArgumentException.class, () -> Edmonds.findMinimumSpanningArborescence(5, edges, 5));
}
@Test
void testCoverageForEdgeSelectionLogic() {
int n = 3;
int root = 0;
List<Edmonds.Edge> edges = new ArrayList<>();
// This will cover the `edge.weight < minWeightEdge[edge.to]` being false.
edges.add(new Edmonds.Edge(0, 1, 10));
edges.add(new Edmonds.Edge(2, 1, 20));
// This will cover the `edge.to != root` being false.
edges.add(new Edmonds.Edge(1, 0, 100));
// A regular edge to make the graph complete
edges.add(new Edmonds.Edge(0, 2, 5));
// Expected MSA: (0,1, w=10) and (0,2, w=5). Total weight = 15.
long result = Edmonds.findMinimumSpanningArborescence(n, edges, root);
assertEquals(15, result);
}
@Test
void testCoverageForContractedSelfLoop() {
int n = 4;
int root = 0;
List<Edmonds.Edge> edges = new ArrayList<>();
// Connect root to the cycle components
edges.add(new Edmonds.Edge(0, 1, 20));
// Create a cycle 1 -> 2 -> 1
edges.add(new Edmonds.Edge(1, 2, 5));
edges.add(new Edmonds.Edge(2, 1, 5));
// This is the CRITICAL edge for coverage:
// It connects two nodes (1 and 2) that are part of the SAME cycle.
// After contracting cycle {1, 2} into a supernode C, this edge becomes (C, C),
// which means newU == newV. This will trigger the `false` branch of the `if`.
edges.add(new Edmonds.Edge(1, 1, 100)); // Also a self-loop on a cycle node.
// Add another edge to ensure node 3 is reachable
edges.add(new Edmonds.Edge(1, 3, 10));
// Cycle {1,2} has cost 5+5=10.
// Contract {1,2} to supernode C.
// Edge (0,1,20) becomes (0,C, w=20-5=15).
// Edge (1,3,10) becomes (C,3, w=10).
// Edge (1,1,100) is discarded because newU == newV.
// Cost of contracted graph = 15 + 10 = 25.
// Total cost = cycle cost + contracted cost = 10 + 25 = 35.
long result = Edmonds.findMinimumSpanningArborescence(n, edges, root);
assertEquals(35, result);
}
}