package com.thealgorithms.graph; import static org.junit.jupiter.api.Assertions.assertEquals; import static org.junit.jupiter.api.Assertions.assertThrows; import java.util.ArrayList; import java.util.List; import org.junit.jupiter.api.Test; class EdmondsTest { @Test void testSimpleGraphNoCycle() { int n = 4; int root = 0; List edges = new ArrayList<>(); edges.add(new Edmonds.Edge(0, 1, 10)); edges.add(new Edmonds.Edge(0, 2, 1)); edges.add(new Edmonds.Edge(2, 1, 2)); edges.add(new Edmonds.Edge(2, 3, 5)); // Expected arborescence edges: (0,2), (2,1), (2,3) // Weights: 1 + 2 + 5 = 8 long result = Edmonds.findMinimumSpanningArborescence(n, edges, root); assertEquals(8, result); } @Test void testGraphWithOneCycle() { int n = 4; int root = 0; List edges = new ArrayList<>(); edges.add(new Edmonds.Edge(0, 1, 10)); edges.add(new Edmonds.Edge(2, 1, 4)); edges.add(new Edmonds.Edge(1, 2, 5)); edges.add(new Edmonds.Edge(2, 3, 6)); // Min edges: (2,1, w=4), (1,2, w=5), (2,3, w=6) // Cycle: 1 -> 2 -> 1, cost = 4 + 5 = 9 // Contract {1,2} to C. // New edge (0,C) with w = 10 - min_in(1) = 10 - 4 = 6 // New edge (C,3) with w = 6 // Contracted MSA cost = 6 + 6 = 12 // Total cost = cycle_cost + contracted_msa_cost = 9 + 12 = 21 long result = Edmonds.findMinimumSpanningArborescence(n, edges, root); assertEquals(21, result); } @Test void testComplexGraphWithCycle() { int n = 6; int root = 0; List edges = new ArrayList<>(); edges.add(new Edmonds.Edge(0, 1, 10)); edges.add(new Edmonds.Edge(0, 2, 20)); edges.add(new Edmonds.Edge(1, 2, 5)); edges.add(new Edmonds.Edge(2, 3, 10)); edges.add(new Edmonds.Edge(3, 1, 3)); edges.add(new Edmonds.Edge(1, 4, 7)); edges.add(new Edmonds.Edge(3, 4, 2)); edges.add(new Edmonds.Edge(4, 5, 5)); // Min edges: (3,1,3), (1,2,5), (2,3,10), (3,4,2), (4,5,5) // Cycle: 1->2->3->1, cost = 5+10+3=18 // Contract {1,2,3} to C. // Edge (0,1,10) -> (0,C), w = 10-3=7 // Edge (0,2,20) -> (0,C), w = 20-5=15. Min is 7. // Edge (1,4,7) -> (C,4,7) // Edge (3,4,2) -> (C,4,2). Min is 2. // Edge (4,5,5) -> (4,5,5) // Contracted MSA: (0,C,7), (C,4,2), (4,5,5). Cost = 7+2+5=14 // Total cost = 18 + 14 = 32 long result = Edmonds.findMinimumSpanningArborescence(n, edges, root); assertEquals(32, result); } @Test void testUnreachableNode() { int n = 4; int root = 0; List edges = new ArrayList<>(); edges.add(new Edmonds.Edge(0, 1, 10)); edges.add(new Edmonds.Edge(2, 3, 5)); // Node 2 and 3 are unreachable from root 0 long result = Edmonds.findMinimumSpanningArborescence(n, edges, root); assertEquals(-1, result); } @Test void testNoEdgesToNonRootNodes() { int n = 3; int root = 0; List edges = new ArrayList<>(); edges.add(new Edmonds.Edge(0, 1, 10)); // Node 2 is unreachable long result = Edmonds.findMinimumSpanningArborescence(n, edges, root); assertEquals(-1, result); } @Test void testSingleNode() { int n = 1; int root = 0; List edges = new ArrayList<>(); long result = Edmonds.findMinimumSpanningArborescence(n, edges, root); assertEquals(0, result); } @Test void testInvalidInputThrowsException() { List edges = new ArrayList<>(); assertThrows(IllegalArgumentException.class, () -> Edmonds.findMinimumSpanningArborescence(0, edges, 0)); assertThrows(IllegalArgumentException.class, () -> Edmonds.findMinimumSpanningArborescence(5, edges, -1)); assertThrows(IllegalArgumentException.class, () -> Edmonds.findMinimumSpanningArborescence(5, edges, 5)); } @Test void testCoverageForEdgeSelectionLogic() { int n = 3; int root = 0; List edges = new ArrayList<>(); // This will cover the `edge.weight < minWeightEdge[edge.to]` being false. edges.add(new Edmonds.Edge(0, 1, 10)); edges.add(new Edmonds.Edge(2, 1, 20)); // This will cover the `edge.to != root` being false. edges.add(new Edmonds.Edge(1, 0, 100)); // A regular edge to make the graph complete edges.add(new Edmonds.Edge(0, 2, 5)); // Expected MSA: (0,1, w=10) and (0,2, w=5). Total weight = 15. long result = Edmonds.findMinimumSpanningArborescence(n, edges, root); assertEquals(15, result); } @Test void testCoverageForContractedSelfLoop() { int n = 4; int root = 0; List edges = new ArrayList<>(); // Connect root to the cycle components edges.add(new Edmonds.Edge(0, 1, 20)); // Create a cycle 1 -> 2 -> 1 edges.add(new Edmonds.Edge(1, 2, 5)); edges.add(new Edmonds.Edge(2, 1, 5)); // This is the CRITICAL edge for coverage: // It connects two nodes (1 and 2) that are part of the SAME cycle. // After contracting cycle {1, 2} into a supernode C, this edge becomes (C, C), // which means newU == newV. This will trigger the `false` branch of the `if`. edges.add(new Edmonds.Edge(1, 1, 100)); // Also a self-loop on a cycle node. // Add another edge to ensure node 3 is reachable edges.add(new Edmonds.Edge(1, 3, 10)); // Cycle {1,2} has cost 5+5=10. // Contract {1,2} to supernode C. // Edge (0,1,20) becomes (0,C, w=20-5=15). // Edge (1,3,10) becomes (C,3, w=10). // Edge (1,1,100) is discarded because newU == newV. // Cost of contracted graph = 15 + 10 = 25. // Total cost = cycle cost + contracted cost = 10 + 25 = 35. long result = Edmonds.findMinimumSpanningArborescence(n, edges, root); assertEquals(35, result); } }