Files
Java/src/test/java/com/thealgorithms/physics/GravitationTest.java
Priyanshu Kumar Singh e21aee814c [FEAT] Add Newton's Law of Gravitation algorithm (#6855)
Co-authored-by: Priyanshu1303d <priyanshu130d@gmail.com>
2025-10-25 17:18:15 +02:00

84 lines
3.6 KiB
Java

package com.thealgorithms.physics;
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;
/**
* Unit tests for the Gravitation utility class.
*/
final class GravitationTest {
// A small tolerance (delta) for comparing floating-point numbers
private static final double DELTA = 1e-9;
private static final double G = Gravitation.GRAVITATIONAL_CONSTANT;
@Test
@DisplayName("Test gravitational force between two bodies on the x-axis")
void testSimpleForceCalculation() {
// Force on body 2 should be F = G*1*1 / 1^2 = G, directed towards body 1 (negative x)
double[] forceOnB = Gravitation.calculateGravitationalForce(1.0, 0, 0, 1.0, 1, 0);
assertArrayEquals(new double[] {-G, 0.0}, forceOnB, DELTA);
// Force on body 1 should be equal and opposite (positive x)
double[] forceOnA = Gravitation.calculateGravitationalForce(1.0, 1, 0, 1.0, 0, 0);
assertArrayEquals(new double[] {G, 0.0}, forceOnA, DELTA);
}
@Test
@DisplayName("Test gravitational force in a 2D plane")
void test2DForceCalculation() {
// Body 1 at (0,0) with mass 2kg
// Body 2 at (3,4) with mass 1kg
// Distance is sqrt(3^2 + 4^2) = 5 meters
double magnitude = 2.0 * G / 25.0; // G * 2 * 1 / 5^2
// Unit vector from 2 to 1 is (-3/5, -4/5)
double expectedFx = magnitude * -3.0 / 5.0; // -6G / 125
double expectedFy = magnitude * -4.0 / 5.0; // -8G / 125
double[] forceOnB = Gravitation.calculateGravitationalForce(2.0, 0, 0, 1.0, 3, 4);
assertArrayEquals(new double[] {expectedFx, expectedFy}, forceOnB, DELTA);
}
@Test
@DisplayName("Test overlapping bodies should result in zero force")
void testOverlappingBodies() {
double[] force = Gravitation.calculateGravitationalForce(1000.0, 1.5, -2.5, 500.0, 1.5, -2.5);
assertArrayEquals(new double[] {0.0, 0.0}, force, DELTA);
}
@Test
@DisplayName("Test circular orbit velocity with simple values")
void testCircularOrbitVelocity() {
// v = sqrt(G*1/1) = sqrt(G)
double velocity = Gravitation.calculateCircularOrbitVelocity(1.0, 1.0);
assertEquals(Math.sqrt(G), velocity, DELTA);
}
@Test
@DisplayName("Test orbital velocity with real-world-ish values (LEO)")
void testEarthOrbitVelocity() {
// Mass of Earth ~5.972e24 kg
// Radius of LEO ~6,771,000 m (Earth radius + 400km)
double earthMass = 5.972e24;
double leoRadius = 6.771e6;
// FIX: Updated expected value to match the high-precision calculation
double expectedVelocity = 7672.4904;
double velocity = Gravitation.calculateCircularOrbitVelocity(earthMass, leoRadius);
assertEquals(expectedVelocity, velocity, 0.0001); // Use a larger delta for big numbers
}
@Test
@DisplayName("Test invalid inputs for orbital velocity throw exception")
void testInvalidOrbitalVelocityInputs() {
assertThrows(IllegalArgumentException.class, () -> Gravitation.calculateCircularOrbitVelocity(0, 100));
assertThrows(IllegalArgumentException.class, () -> Gravitation.calculateCircularOrbitVelocity(-1000, 100));
assertThrows(IllegalArgumentException.class, () -> Gravitation.calculateCircularOrbitVelocity(1000, 0));
assertThrows(IllegalArgumentException.class, () -> Gravitation.calculateCircularOrbitVelocity(1000, -100));
}
}