[FEAT] Add Newton's Law of Gravitation algorithm (#6855)

Co-authored-by: Priyanshu1303d <priyanshu130d@gmail.com>
This commit is contained in:
Priyanshu Kumar Singh
2025-10-25 20:48:15 +05:30
committed by GitHub
parent ab65ac6485
commit e21aee814c
2 changed files with 149 additions and 0 deletions

View File

@@ -0,0 +1,66 @@
package com.thealgorithms.physics;
/**
* Implements Newton's Law of Universal Gravitation.
* Provides simple static methods to calculate gravitational force and circular orbit velocity.
*
* @author [Priyanshu Kumar Singh](https://github.com/Priyanshu1303d)
* @see <a href="https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation">Wikipedia</a>
*/
public final class Gravitation {
/** Gravitational constant in m^3 kg^-1 s^-2 */
public static final double GRAVITATIONAL_CONSTANT = 6.67430e-11;
/**
* Private constructor to prevent instantiation of this utility class.
*/
private Gravitation() {
}
/**
* Calculates the gravitational force vector exerted by one body on another.
*
* @param m1 Mass of the first body (kg).
* @param x1 X-position of the first body (m).
* @param y1 Y-position of the first body (m).
* @param m2 Mass of the second body (kg).
* @param x2 X-position of the second body (m).
* @param y2 Y-position of the second body (m).
* @return A double array `[fx, fy]` representing the force vector on the second body.
*/
public static double[] calculateGravitationalForce(double m1, double x1, double y1, double m2, double x2, double y2) {
double dx = x1 - x2;
double dy = y1 - y2;
double distanceSq = dx * dx + dy * dy;
// If bodies are at the same position, force is zero to avoid division by zero.
if (distanceSq == 0) {
return new double[] {0, 0};
}
double distance = Math.sqrt(distanceSq);
double forceMagnitude = GRAVITATIONAL_CONSTANT * m1 * m2 / distanceSq;
// Calculate the components of the force vector
double fx = forceMagnitude * (dx / distance);
double fy = forceMagnitude * (dy / distance);
return new double[] {fx, fy};
}
/**
* Calculates the speed required for a stable circular orbit.
*
* @param centralMass The mass of the central body (kg).
* @param radius The radius of the orbit (m).
* @return The orbital speed (m/s).
* @throws IllegalArgumentException if mass or radius are not positive.
*/
public static double calculateCircularOrbitVelocity(double centralMass, double radius) {
if (centralMass <= 0 || radius <= 0) {
throw new IllegalArgumentException("Mass and radius must be positive.");
}
return Math.sqrt(GRAVITATIONAL_CONSTANT * centralMass / radius);
}
}

View File

@@ -0,0 +1,83 @@
package com.thealgorithms.physics;
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;
/**
* Unit tests for the Gravitation utility class.
*/
final class GravitationTest {
// A small tolerance (delta) for comparing floating-point numbers
private static final double DELTA = 1e-9;
private static final double G = Gravitation.GRAVITATIONAL_CONSTANT;
@Test
@DisplayName("Test gravitational force between two bodies on the x-axis")
void testSimpleForceCalculation() {
// Force on body 2 should be F = G*1*1 / 1^2 = G, directed towards body 1 (negative x)
double[] forceOnB = Gravitation.calculateGravitationalForce(1.0, 0, 0, 1.0, 1, 0);
assertArrayEquals(new double[] {-G, 0.0}, forceOnB, DELTA);
// Force on body 1 should be equal and opposite (positive x)
double[] forceOnA = Gravitation.calculateGravitationalForce(1.0, 1, 0, 1.0, 0, 0);
assertArrayEquals(new double[] {G, 0.0}, forceOnA, DELTA);
}
@Test
@DisplayName("Test gravitational force in a 2D plane")
void test2DForceCalculation() {
// Body 1 at (0,0) with mass 2kg
// Body 2 at (3,4) with mass 1kg
// Distance is sqrt(3^2 + 4^2) = 5 meters
double magnitude = 2.0 * G / 25.0; // G * 2 * 1 / 5^2
// Unit vector from 2 to 1 is (-3/5, -4/5)
double expectedFx = magnitude * -3.0 / 5.0; // -6G / 125
double expectedFy = magnitude * -4.0 / 5.0; // -8G / 125
double[] forceOnB = Gravitation.calculateGravitationalForce(2.0, 0, 0, 1.0, 3, 4);
assertArrayEquals(new double[] {expectedFx, expectedFy}, forceOnB, DELTA);
}
@Test
@DisplayName("Test overlapping bodies should result in zero force")
void testOverlappingBodies() {
double[] force = Gravitation.calculateGravitationalForce(1000.0, 1.5, -2.5, 500.0, 1.5, -2.5);
assertArrayEquals(new double[] {0.0, 0.0}, force, DELTA);
}
@Test
@DisplayName("Test circular orbit velocity with simple values")
void testCircularOrbitVelocity() {
// v = sqrt(G*1/1) = sqrt(G)
double velocity = Gravitation.calculateCircularOrbitVelocity(1.0, 1.0);
assertEquals(Math.sqrt(G), velocity, DELTA);
}
@Test
@DisplayName("Test orbital velocity with real-world-ish values (LEO)")
void testEarthOrbitVelocity() {
// Mass of Earth ~5.972e24 kg
// Radius of LEO ~6,771,000 m (Earth radius + 400km)
double earthMass = 5.972e24;
double leoRadius = 6.771e6;
// FIX: Updated expected value to match the high-precision calculation
double expectedVelocity = 7672.4904;
double velocity = Gravitation.calculateCircularOrbitVelocity(earthMass, leoRadius);
assertEquals(expectedVelocity, velocity, 0.0001); // Use a larger delta for big numbers
}
@Test
@DisplayName("Test invalid inputs for orbital velocity throw exception")
void testInvalidOrbitalVelocityInputs() {
assertThrows(IllegalArgumentException.class, () -> Gravitation.calculateCircularOrbitVelocity(0, 100));
assertThrows(IllegalArgumentException.class, () -> Gravitation.calculateCircularOrbitVelocity(-1000, 100));
assertThrows(IllegalArgumentException.class, () -> Gravitation.calculateCircularOrbitVelocity(1000, 0));
assertThrows(IllegalArgumentException.class, () -> Gravitation.calculateCircularOrbitVelocity(1000, -100));
}
}