mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
* Bron–Kerbosch algorithm added. * test:Bron–Kerbosch algorithm added. * lint checked. * clang-format linting checked. * lint checked in remote Removed duplicate import statements for assertions. * Remove unnecessary blank line in BronKerboschTest * EdmondsKarp algorithm added. * reformatted --------- Co-authored-by: Oleksandr Klymenko <alexanderklmn@gmail.com>
115 lines
3.9 KiB
Java
115 lines
3.9 KiB
Java
package com.thealgorithms.graph;
|
||
|
||
import java.util.ArrayList;
|
||
import java.util.HashSet;
|
||
import java.util.List;
|
||
import java.util.Set;
|
||
|
||
/**
|
||
* Implementation of the Bron–Kerbosch algorithm with pivoting for enumerating all maximal cliques
|
||
* in an undirected graph.
|
||
*
|
||
* <p>The input graph is represented as an adjacency list where {@code adjacency.get(u)} returns the
|
||
* set of vertices adjacent to {@code u}. The algorithm runs in time proportional to the number of
|
||
* maximal cliques produced and is widely used for clique enumeration problems.</p>
|
||
*
|
||
* @author <a href="https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm">Wikipedia: Bron–Kerbosch algorithm</a>
|
||
*/
|
||
public final class BronKerbosch {
|
||
|
||
private BronKerbosch() {
|
||
}
|
||
|
||
/**
|
||
* Finds all maximal cliques of the provided graph.
|
||
*
|
||
* @param adjacency adjacency list where {@code adjacency.size()} equals the number of vertices
|
||
* @return a list containing every maximal clique, each represented as a {@link Set} of vertices
|
||
* @throws IllegalArgumentException if the adjacency list is {@code null}, contains {@code null}
|
||
* entries, or references invalid vertices
|
||
*/
|
||
public static List<Set<Integer>> findMaximalCliques(List<Set<Integer>> adjacency) {
|
||
if (adjacency == null) {
|
||
throw new IllegalArgumentException("Adjacency list must not be null");
|
||
}
|
||
|
||
int n = adjacency.size();
|
||
List<Set<Integer>> graph = new ArrayList<>(n);
|
||
for (int u = 0; u < n; u++) {
|
||
Set<Integer> neighbors = adjacency.get(u);
|
||
if (neighbors == null) {
|
||
throw new IllegalArgumentException("Adjacency list must not contain null sets");
|
||
}
|
||
Set<Integer> copy = new HashSet<>();
|
||
for (int v : neighbors) {
|
||
if (v < 0 || v >= n) {
|
||
throw new IllegalArgumentException("Neighbor index out of bounds: " + v);
|
||
}
|
||
if (v != u) {
|
||
copy.add(v);
|
||
}
|
||
}
|
||
graph.add(copy);
|
||
}
|
||
|
||
Set<Integer> r = new HashSet<>();
|
||
Set<Integer> p = new HashSet<>();
|
||
Set<Integer> x = new HashSet<>();
|
||
for (int v = 0; v < n; v++) {
|
||
p.add(v);
|
||
}
|
||
|
||
List<Set<Integer>> cliques = new ArrayList<>();
|
||
bronKerboschPivot(r, p, x, graph, cliques);
|
||
return cliques;
|
||
}
|
||
|
||
private static void bronKerboschPivot(Set<Integer> r, Set<Integer> p, Set<Integer> x, List<Set<Integer>> graph, List<Set<Integer>> cliques) {
|
||
if (p.isEmpty() && x.isEmpty()) {
|
||
cliques.add(new HashSet<>(r));
|
||
return;
|
||
}
|
||
|
||
int pivot = choosePivot(p, x, graph);
|
||
Set<Integer> candidates = new HashSet<>(p);
|
||
if (pivot != -1) {
|
||
candidates.removeAll(graph.get(pivot));
|
||
}
|
||
|
||
for (Integer v : candidates) {
|
||
r.add(v);
|
||
Set<Integer> newP = intersection(p, graph.get(v));
|
||
Set<Integer> newX = intersection(x, graph.get(v));
|
||
bronKerboschPivot(r, newP, newX, graph, cliques);
|
||
r.remove(v);
|
||
p.remove(v);
|
||
x.add(v);
|
||
}
|
||
}
|
||
|
||
private static int choosePivot(Set<Integer> p, Set<Integer> x, List<Set<Integer>> graph) {
|
||
int pivot = -1;
|
||
int maxDegree = -1;
|
||
Set<Integer> union = new HashSet<>(p);
|
||
union.addAll(x);
|
||
for (Integer v : union) {
|
||
int degree = graph.get(v).size();
|
||
if (degree > maxDegree) {
|
||
maxDegree = degree;
|
||
pivot = v;
|
||
}
|
||
}
|
||
return pivot;
|
||
}
|
||
|
||
private static Set<Integer> intersection(Set<Integer> base, Set<Integer> neighbors) {
|
||
Set<Integer> result = new HashSet<>();
|
||
for (Integer v : base) {
|
||
if (neighbors.contains(v)) {
|
||
result.add(v);
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
}
|