package com.thealgorithms.graph;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
/**
* Implementation of the Bron–Kerbosch algorithm with pivoting for enumerating all maximal cliques
* in an undirected graph.
*
*
The input graph is represented as an adjacency list where {@code adjacency.get(u)} returns the
* set of vertices adjacent to {@code u}. The algorithm runs in time proportional to the number of
* maximal cliques produced and is widely used for clique enumeration problems.
*
* @author Wikipedia: Bron–Kerbosch algorithm
*/
public final class BronKerbosch {
private BronKerbosch() {
}
/**
* Finds all maximal cliques of the provided graph.
*
* @param adjacency adjacency list where {@code adjacency.size()} equals the number of vertices
* @return a list containing every maximal clique, each represented as a {@link Set} of vertices
* @throws IllegalArgumentException if the adjacency list is {@code null}, contains {@code null}
* entries, or references invalid vertices
*/
public static List> findMaximalCliques(List> adjacency) {
if (adjacency == null) {
throw new IllegalArgumentException("Adjacency list must not be null");
}
int n = adjacency.size();
List> graph = new ArrayList<>(n);
for (int u = 0; u < n; u++) {
Set neighbors = adjacency.get(u);
if (neighbors == null) {
throw new IllegalArgumentException("Adjacency list must not contain null sets");
}
Set copy = new HashSet<>();
for (int v : neighbors) {
if (v < 0 || v >= n) {
throw new IllegalArgumentException("Neighbor index out of bounds: " + v);
}
if (v != u) {
copy.add(v);
}
}
graph.add(copy);
}
Set r = new HashSet<>();
Set p = new HashSet<>();
Set x = new HashSet<>();
for (int v = 0; v < n; v++) {
p.add(v);
}
List> cliques = new ArrayList<>();
bronKerboschPivot(r, p, x, graph, cliques);
return cliques;
}
private static void bronKerboschPivot(Set r, Set p, Set x, List> graph, List> cliques) {
if (p.isEmpty() && x.isEmpty()) {
cliques.add(new HashSet<>(r));
return;
}
int pivot = choosePivot(p, x, graph);
Set candidates = new HashSet<>(p);
if (pivot != -1) {
candidates.removeAll(graph.get(pivot));
}
for (Integer v : candidates) {
r.add(v);
Set newP = intersection(p, graph.get(v));
Set newX = intersection(x, graph.get(v));
bronKerboschPivot(r, newP, newX, graph, cliques);
r.remove(v);
p.remove(v);
x.add(v);
}
}
private static int choosePivot(Set p, Set x, List> graph) {
int pivot = -1;
int maxDegree = -1;
Set union = new HashSet<>(p);
union.addAll(x);
for (Integer v : union) {
int degree = graph.get(v).size();
if (degree > maxDegree) {
maxDegree = degree;
pivot = v;
}
}
return pivot;
}
private static Set intersection(Set base, Set neighbors) {
Set result = new HashSet<>();
for (Integer v : base) {
if (neighbors.contains(v)) {
result.add(v);
}
}
return result;
}
}