mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
120 lines
3.8 KiB
Java
120 lines
3.8 KiB
Java
package com.thealgorithms.dynamicprogramming;
|
||
|
||
import java.util.HashMap;
|
||
import java.util.Map;
|
||
|
||
/**
|
||
* @author Varun Upadhyay (https://github.com/varunu28)
|
||
*/
|
||
public final class Fibonacci {
|
||
private Fibonacci() {
|
||
}
|
||
|
||
static final Map<Integer, Integer> CACHE = new HashMap<>();
|
||
|
||
/**
|
||
* This method finds the nth fibonacci number using memoization technique
|
||
*
|
||
* @param n The input n for which we have to determine the fibonacci number
|
||
* Outputs the nth fibonacci number
|
||
* @throws IllegalArgumentException if n is negative
|
||
*/
|
||
public static int fibMemo(int n) {
|
||
if (n < 0) {
|
||
throw new IllegalArgumentException("Input n must be non-negative");
|
||
}
|
||
if (CACHE.containsKey(n)) {
|
||
return CACHE.get(n);
|
||
}
|
||
|
||
int f;
|
||
|
||
if (n <= 1) {
|
||
f = n;
|
||
} else {
|
||
f = fibMemo(n - 1) + fibMemo(n - 2);
|
||
CACHE.put(n, f);
|
||
}
|
||
return f;
|
||
}
|
||
|
||
/**
|
||
* This method finds the nth fibonacci number using bottom up
|
||
*
|
||
* @param n The input n for which we have to determine the fibonacci number
|
||
* Outputs the nth fibonacci number
|
||
* @throws IllegalArgumentException if n is negative
|
||
*/
|
||
public static int fibBotUp(int n) {
|
||
if (n < 0) {
|
||
throw new IllegalArgumentException("Input n must be non-negative");
|
||
}
|
||
Map<Integer, Integer> fib = new HashMap<>();
|
||
|
||
for (int i = 0; i <= n; i++) {
|
||
int f;
|
||
if (i <= 1) {
|
||
f = i;
|
||
} else {
|
||
f = fib.get(i - 1) + fib.get(i - 2);
|
||
}
|
||
fib.put(i, f);
|
||
}
|
||
|
||
return fib.get(n);
|
||
}
|
||
|
||
/**
|
||
* This method finds the nth fibonacci number using bottom up
|
||
*
|
||
* @param n The input n for which we have to determine the fibonacci number
|
||
* Outputs the nth fibonacci number
|
||
* <p>
|
||
* This is optimized version of Fibonacci Program. Without using Hashmap and
|
||
* recursion. It saves both memory and time. Space Complexity will be O(1)
|
||
* Time Complexity will be O(n)
|
||
* <p>
|
||
* Whereas , the above functions will take O(n) Space.
|
||
* @throws IllegalArgumentException if n is negative
|
||
* @author Shoaib Rayeen (https://github.com/shoaibrayeen)
|
||
*/
|
||
public static int fibOptimized(int n) {
|
||
if (n < 0) {
|
||
throw new IllegalArgumentException("Input n must be non-negative");
|
||
}
|
||
if (n == 0) {
|
||
return 0;
|
||
}
|
||
int prev = 0;
|
||
int res = 1;
|
||
int next;
|
||
for (int i = 2; i <= n; i++) {
|
||
next = prev + res;
|
||
prev = res;
|
||
res = next;
|
||
}
|
||
return res;
|
||
}
|
||
|
||
/**
|
||
* We have only defined the nth Fibonacci number in terms of the two before it. Now, we will
|
||
* look at Binet's formula to calculate the nth Fibonacci number in constant time. The Fibonacci
|
||
* terms maintain a ratio called golden ratio denoted by Φ, the Greek character pronounced
|
||
* ‘phi'. First, let's look at how the golden ratio is calculated: Φ = ( 1 + √5 )/2
|
||
* = 1.6180339887... Now, let's look at Binet's formula: Sn = Φⁿ–(– Φ⁻ⁿ)/√5 We first calculate
|
||
* the squareRootof5 and phi and store them in variables. Later, we apply Binet's formula to get
|
||
* the required term. Time Complexity will be O(1)
|
||
* @param n The input n for which we have to determine the fibonacci number
|
||
* Outputs the nth fibonacci number
|
||
* @throws IllegalArgumentException if n is negative
|
||
*/
|
||
public static int fibBinet(int n) {
|
||
if (n < 0) {
|
||
throw new IllegalArgumentException("Input n must be non-negative");
|
||
}
|
||
double squareRootOf5 = Math.sqrt(5);
|
||
double phi = (1 + squareRootOf5) / 2;
|
||
return (int) ((Math.pow(phi, n) - Math.pow(-phi, -n)) / squareRootOf5);
|
||
}
|
||
}
|