package com.thealgorithms.dynamicprogramming; import java.util.HashMap; import java.util.Map; /** * @author Varun Upadhyay (https://github.com/varunu28) */ public final class Fibonacci { private Fibonacci() { } static final Map CACHE = new HashMap<>(); /** * This method finds the nth fibonacci number using memoization technique * * @param n The input n for which we have to determine the fibonacci number * Outputs the nth fibonacci number * @throws IllegalArgumentException if n is negative */ public static int fibMemo(int n) { if (n < 0) { throw new IllegalArgumentException("Input n must be non-negative"); } if (CACHE.containsKey(n)) { return CACHE.get(n); } int f; if (n <= 1) { f = n; } else { f = fibMemo(n - 1) + fibMemo(n - 2); CACHE.put(n, f); } return f; } /** * This method finds the nth fibonacci number using bottom up * * @param n The input n for which we have to determine the fibonacci number * Outputs the nth fibonacci number * @throws IllegalArgumentException if n is negative */ public static int fibBotUp(int n) { if (n < 0) { throw new IllegalArgumentException("Input n must be non-negative"); } Map fib = new HashMap<>(); for (int i = 0; i <= n; i++) { int f; if (i <= 1) { f = i; } else { f = fib.get(i - 1) + fib.get(i - 2); } fib.put(i, f); } return fib.get(n); } /** * This method finds the nth fibonacci number using bottom up * * @param n The input n for which we have to determine the fibonacci number * Outputs the nth fibonacci number *

* This is optimized version of Fibonacci Program. Without using Hashmap and * recursion. It saves both memory and time. Space Complexity will be O(1) * Time Complexity will be O(n) *

* Whereas , the above functions will take O(n) Space. * @throws IllegalArgumentException if n is negative * @author Shoaib Rayeen (https://github.com/shoaibrayeen) */ public static int fibOptimized(int n) { if (n < 0) { throw new IllegalArgumentException("Input n must be non-negative"); } if (n == 0) { return 0; } int prev = 0; int res = 1; int next; for (int i = 2; i <= n; i++) { next = prev + res; prev = res; res = next; } return res; } /** * We have only defined the nth Fibonacci number in terms of the two before it. Now, we will * look at Binet's formula to calculate the nth Fibonacci number in constant time. The Fibonacci * terms maintain a ratio called golden ratio denoted by Φ, the Greek character pronounced * ‘phi'. First, let's look at how the golden ratio is calculated: Φ = ( 1 + √5 )/2 * = 1.6180339887... Now, let's look at Binet's formula: Sn = Φⁿ–(– Φ⁻ⁿ)/√5 We first calculate * the squareRootof5 and phi and store them in variables. Later, we apply Binet's formula to get * the required term. Time Complexity will be O(1) * @param n The input n for which we have to determine the fibonacci number * Outputs the nth fibonacci number * @throws IllegalArgumentException if n is negative */ public static int fibBinet(int n) { if (n < 0) { throw new IllegalArgumentException("Input n must be non-negative"); } double squareRootOf5 = Math.sqrt(5); double phi = (1 + squareRootOf5) / 2; return (int) ((Math.pow(phi, n) - Math.pow(-phi, -n)) / squareRootOf5); } }