mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
196 lines
6.5 KiB
Java
196 lines
6.5 KiB
Java
package com.thealgorithms.randomized;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.Collection;
|
|
import java.util.HashSet;
|
|
import java.util.List;
|
|
import java.util.Random;
|
|
import java.util.Set;
|
|
|
|
/**
|
|
* Implementation of Karger's Minimum Cut algorithm.
|
|
*
|
|
* <p>Karger's algorithm is a randomized algorithm to compute the minimum cut of a connected graph.
|
|
* A minimum cut is the smallest set of edges that, if removed, would split the graph into two
|
|
* disconnected components.
|
|
*
|
|
* <p>The algorithm works by repeatedly contracting random edges in the graph until only two
|
|
* nodes remain. The edges between these two nodes represent a cut. By running the algorithm
|
|
* multiple times and keeping track of the smallest cut found, the probability of finding the
|
|
* true minimum cut increases.
|
|
*
|
|
* <p>Key steps of the algorithm:
|
|
* <ol>
|
|
* <li>Randomly select an edge and contract it, merging the two nodes into one.</li>
|
|
* <li>Repeat the contraction process until only two nodes remain.</li>
|
|
* <li>Count the edges between the two remaining nodes to determine the cut size.</li>
|
|
* <li>Repeat the process multiple times to improve the likelihood of finding the true minimum cut.</li>
|
|
* </ol>
|
|
* <p>
|
|
* See more: <a href="https://en.wikipedia.org/wiki/Karger%27s_algorithm">Karger's algorithm</a>
|
|
*
|
|
* @author MuhammadEzzatHBK
|
|
*/
|
|
public final class KargerMinCut {
|
|
|
|
/**
|
|
* Output of the Karger algorithm.
|
|
*
|
|
* @param first The first set of nodes in the cut.
|
|
* @param second The second set of nodes in the cut.
|
|
* @param minCut The size of the minimum cut.
|
|
*/
|
|
public record KargerOutput(Set<Integer> first, Set<Integer> second, int minCut) {
|
|
}
|
|
|
|
private KargerMinCut() {
|
|
}
|
|
|
|
public static KargerOutput findMinCut(Collection<Integer> nodeSet, List<int[]> edges) {
|
|
return findMinCut(nodeSet, edges, 100);
|
|
}
|
|
|
|
/**
|
|
* Finds the minimum cut of a graph using Karger's algorithm.
|
|
*
|
|
* @param nodeSet: Input graph nodes
|
|
* @param edges: Input graph edges
|
|
* @param iterations: Iterations to run the algorithms for, more iterations = more accuracy
|
|
* @return A KargerOutput object containing the two sets of nodes and the size of the minimum cut.
|
|
*/
|
|
public static KargerOutput findMinCut(Collection<Integer> nodeSet, List<int[]> edges, int iterations) {
|
|
Graph graph = new Graph(nodeSet, edges);
|
|
KargerOutput minCut = new KargerOutput(new HashSet<>(), new HashSet<>(), Integer.MAX_VALUE);
|
|
KargerOutput output;
|
|
|
|
// Run the algorithm multiple times to increase the probability of finding
|
|
for (int i = 0; i < iterations; i++) {
|
|
Graph clone = graph.copy();
|
|
output = clone.findMinCut();
|
|
if (output.minCut < minCut.minCut) {
|
|
minCut = output;
|
|
}
|
|
}
|
|
return minCut;
|
|
}
|
|
|
|
private static class DisjointSetUnion {
|
|
private final int[] parent;
|
|
int setCount;
|
|
|
|
DisjointSetUnion(int size) {
|
|
parent = new int[size];
|
|
for (int i = 0; i < size; i++) {
|
|
parent[i] = i;
|
|
}
|
|
setCount = size;
|
|
}
|
|
|
|
int find(int i) {
|
|
// If it's not its own parent, then it's not the root of its set
|
|
if (parent[i] != i) {
|
|
// Recursively find the root of its parent
|
|
// and update i's parent to point directly to the root (path compression)
|
|
parent[i] = find(parent[i]);
|
|
}
|
|
|
|
// Return the root (representative) of the set
|
|
return parent[i];
|
|
}
|
|
|
|
void union(int u, int v) {
|
|
// Find the root of each node
|
|
int rootU = find(u);
|
|
int rootV = find(v);
|
|
|
|
// If they belong to different sets, merge them
|
|
if (rootU != rootV) {
|
|
// Make rootV point to rootU — merge the two sets
|
|
parent[rootV] = rootU;
|
|
|
|
// Reduce the count of disjoint sets by 1
|
|
setCount--;
|
|
}
|
|
}
|
|
|
|
boolean inSameSet(int u, int v) {
|
|
return find(u) == find(v);
|
|
}
|
|
|
|
/*
|
|
This is a verbosity method, it's not a part of the core algorithm,
|
|
But it helps us provide more useful output.
|
|
*/
|
|
Set<Integer> getAnySet() {
|
|
int aRoot = find(0); // Get one of the two roots
|
|
|
|
Set<Integer> set = new HashSet<>();
|
|
for (int i = 0; i < parent.length; i++) {
|
|
if (find(i) == aRoot) {
|
|
set.add(i);
|
|
}
|
|
}
|
|
|
|
return set;
|
|
}
|
|
}
|
|
|
|
private static class Graph {
|
|
private final List<Integer> nodes;
|
|
private final List<int[]> edges;
|
|
|
|
Graph(Collection<Integer> nodeSet, List<int[]> edges) {
|
|
this.nodes = new ArrayList<>(nodeSet);
|
|
this.edges = new ArrayList<>();
|
|
for (int[] e : edges) {
|
|
this.edges.add(new int[] {e[0], e[1]});
|
|
}
|
|
}
|
|
|
|
Graph copy() {
|
|
return new Graph(this.nodes, this.edges);
|
|
}
|
|
|
|
KargerOutput findMinCut() {
|
|
DisjointSetUnion dsu = new DisjointSetUnion(nodes.size());
|
|
List<int[]> workingEdges = new ArrayList<>(edges);
|
|
|
|
Random rand = new Random();
|
|
|
|
while (dsu.setCount > 2) {
|
|
int[] e = workingEdges.get(rand.nextInt(workingEdges.size()));
|
|
if (!dsu.inSameSet(e[0], e[1])) {
|
|
dsu.union(e[0], e[1]);
|
|
}
|
|
}
|
|
|
|
int cutEdges = 0;
|
|
for (int[] e : edges) {
|
|
if (!dsu.inSameSet(e[0], e[1])) {
|
|
cutEdges++;
|
|
}
|
|
}
|
|
|
|
return collectResult(dsu, cutEdges);
|
|
}
|
|
|
|
/*
|
|
This is a verbosity method, it's not a part of the core algorithm,
|
|
But it helps us provide more useful output.
|
|
*/
|
|
private KargerOutput collectResult(DisjointSetUnion dsu, int cutEdges) {
|
|
Set<Integer> firstIndices = dsu.getAnySet();
|
|
Set<Integer> firstSet = new HashSet<>();
|
|
Set<Integer> secondSet = new HashSet<>();
|
|
for (int i = 0; i < nodes.size(); i++) {
|
|
if (firstIndices.contains(i)) {
|
|
firstSet.add(nodes.get(i));
|
|
} else {
|
|
secondSet.add(nodes.get(i));
|
|
}
|
|
}
|
|
return new KargerOutput(firstSet, secondSet, cutEdges);
|
|
}
|
|
}
|
|
}
|