Add Karger's minimum cut algorithm (#6233)

This commit is contained in:
Muhammad Ezzat
2025-05-05 18:09:28 +03:00
committed by GitHub
parent d866fbd32a
commit 571d05caa8
2 changed files with 309 additions and 0 deletions

View File

@ -0,0 +1,195 @@
package com.thealgorithms.randomized;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
/**
* Implementation of Karger's Minimum Cut algorithm.
*
* <p>Karger's algorithm is a randomized algorithm to compute the minimum cut of a connected graph.
* A minimum cut is the smallest set of edges that, if removed, would split the graph into two
* disconnected components.
*
* <p>The algorithm works by repeatedly contracting random edges in the graph until only two
* nodes remain. The edges between these two nodes represent a cut. By running the algorithm
* multiple times and keeping track of the smallest cut found, the probability of finding the
* true minimum cut increases.
*
* <p>Key steps of the algorithm:
* <ol>
* <li>Randomly select an edge and contract it, merging the two nodes into one.</li>
* <li>Repeat the contraction process until only two nodes remain.</li>
* <li>Count the edges between the two remaining nodes to determine the cut size.</li>
* <li>Repeat the process multiple times to improve the likelihood of finding the true minimum cut.</li>
* </ol>
* <p>
* See more: <a href="https://en.wikipedia.org/wiki/Karger%27s_algorithm">Karger's algorithm</a>
*
* @author MuhammadEzzatHBK
*/
public final class KargerMinCut {
/**
* Output of the Karger algorithm.
*
* @param first The first set of nodes in the cut.
* @param second The second set of nodes in the cut.
* @param minCut The size of the minimum cut.
*/
public record KargerOutput(Set<Integer> first, Set<Integer> second, int minCut) {
}
private KargerMinCut() {
}
public static KargerOutput findMinCut(Collection<Integer> nodeSet, List<int[]> edges) {
return findMinCut(nodeSet, edges, 100);
}
/**
* Finds the minimum cut of a graph using Karger's algorithm.
*
* @param nodeSet: Input graph nodes
* @param edges: Input graph edges
* @param iterations: Iterations to run the algorithms for, more iterations = more accuracy
* @return A KargerOutput object containing the two sets of nodes and the size of the minimum cut.
*/
public static KargerOutput findMinCut(Collection<Integer> nodeSet, List<int[]> edges, int iterations) {
Graph graph = new Graph(nodeSet, edges);
KargerOutput minCut = new KargerOutput(new HashSet<>(), new HashSet<>(), Integer.MAX_VALUE);
KargerOutput output;
// Run the algorithm multiple times to increase the probability of finding
for (int i = 0; i < iterations; i++) {
Graph clone = graph.copy();
output = clone.findMinCut();
if (output.minCut < minCut.minCut) {
minCut = output;
}
}
return minCut;
}
private static class DisjointSetUnion {
private final int[] parent;
int setCount;
DisjointSetUnion(int size) {
parent = new int[size];
for (int i = 0; i < size; i++) {
parent[i] = i;
}
setCount = size;
}
int find(int i) {
// If it's not its own parent, then it's not the root of its set
if (parent[i] != i) {
// Recursively find the root of its parent
// and update i's parent to point directly to the root (path compression)
parent[i] = find(parent[i]);
}
// Return the root (representative) of the set
return parent[i];
}
void union(int u, int v) {
// Find the root of each node
int rootU = find(u);
int rootV = find(v);
// If they belong to different sets, merge them
if (rootU != rootV) {
// Make rootV point to rootU — merge the two sets
parent[rootV] = rootU;
// Reduce the count of disjoint sets by 1
setCount--;
}
}
boolean inSameSet(int u, int v) {
return find(u) == find(v);
}
/*
This is a verbosity method, it's not a part of the core algorithm,
But it helps us provide more useful output.
*/
Set<Integer> getAnySet() {
int aRoot = find(0); // Get one of the two roots
Set<Integer> set = new HashSet<>();
for (int i = 0; i < parent.length; i++) {
if (find(i) == aRoot) {
set.add(i);
}
}
return set;
}
}
private static class Graph {
private final List<Integer> nodes;
private final List<int[]> edges;
Graph(Collection<Integer> nodeSet, List<int[]> edges) {
this.nodes = new ArrayList<>(nodeSet);
this.edges = new ArrayList<>();
for (int[] e : edges) {
this.edges.add(new int[] {e[0], e[1]});
}
}
Graph copy() {
return new Graph(this.nodes, this.edges);
}
KargerOutput findMinCut() {
DisjointSetUnion dsu = new DisjointSetUnion(nodes.size());
List<int[]> workingEdges = new ArrayList<>(edges);
Random rand = new Random();
while (dsu.setCount > 2) {
int[] e = workingEdges.get(rand.nextInt(workingEdges.size()));
if (!dsu.inSameSet(e[0], e[1])) {
dsu.union(e[0], e[1]);
}
}
int cutEdges = 0;
for (int[] e : edges) {
if (!dsu.inSameSet(e[0], e[1])) {
cutEdges++;
}
}
return collectResult(dsu, cutEdges);
}
/*
This is a verbosity method, it's not a part of the core algorithm,
But it helps us provide more useful output.
*/
private KargerOutput collectResult(DisjointSetUnion dsu, int cutEdges) {
Set<Integer> firstIndices = dsu.getAnySet();
Set<Integer> firstSet = new HashSet<>();
Set<Integer> secondSet = new HashSet<>();
for (int i = 0; i < nodes.size(); i++) {
if (firstIndices.contains(i)) {
firstSet.add(nodes.get(i));
} else {
secondSet.add(nodes.get(i));
}
}
return new KargerOutput(firstSet, secondSet, cutEdges);
}
}
}

View File

@ -0,0 +1,114 @@
package com.thealgorithms.randomized;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
import org.junit.jupiter.api.Test;
public class KargerMinCutTest {
@Test
public void testSimpleGraph() {
// Graph: 0 -- 1
Collection<Integer> nodes = Arrays.asList(0, 1);
List<int[]> edges = List.of(new int[] {0, 1});
KargerMinCut.KargerOutput result = KargerMinCut.findMinCut(nodes, edges);
assertEquals(1, result.minCut());
assertTrue(result.first().contains(0) || result.first().contains(1));
assertTrue(result.second().contains(0) || result.second().contains(1));
}
@Test
public void testTriangleGraph() {
// Graph: 0 -- 1 -- 2 -- 0
Collection<Integer> nodes = Arrays.asList(0, 1, 2);
List<int[]> edges = List.of(new int[] {0, 1}, new int[] {1, 2}, new int[] {2, 0});
KargerMinCut.KargerOutput result = KargerMinCut.findMinCut(nodes, edges);
assertEquals(2, result.minCut());
}
@Test
public void testSquareGraph() {
// Graph: 0 -- 1
// | |
// 3 -- 2
Collection<Integer> nodes = Arrays.asList(0, 1, 2, 3);
List<int[]> edges = List.of(new int[] {0, 1}, new int[] {1, 2}, new int[] {2, 3}, new int[] {3, 0});
KargerMinCut.KargerOutput result = KargerMinCut.findMinCut(nodes, edges);
assertEquals(2, result.minCut());
}
@Test
public void testDisconnectedGraph() {
// Graph: 0 -- 1 2 -- 3
Collection<Integer> nodes = Arrays.asList(0, 1, 2, 3);
List<int[]> edges = List.of(new int[] {0, 1}, new int[] {2, 3});
KargerMinCut.KargerOutput result = KargerMinCut.findMinCut(nodes, edges);
assertEquals(0, result.minCut());
}
@Test
public void testCompleteGraph() {
// Complete Graph: 0 -- 1 -- 2 -- 3 (all nodes connected to each other)
Collection<Integer> nodes = Arrays.asList(0, 1, 2, 3);
List<int[]> edges = List.of(new int[] {0, 1}, new int[] {0, 2}, new int[] {0, 3}, new int[] {1, 2}, new int[] {1, 3}, new int[] {2, 3});
KargerMinCut.KargerOutput result = KargerMinCut.findMinCut(nodes, edges);
assertEquals(3, result.minCut());
}
@Test
public void testSingleNodeGraph() {
// Graph: Single node with no edges
Collection<Integer> nodes = List.of(0);
List<int[]> edges = List.of();
KargerMinCut.KargerOutput result = KargerMinCut.findMinCut(nodes, edges);
assertEquals(0, result.minCut());
assertTrue(result.first().contains(0));
assertTrue(result.second().isEmpty());
}
@Test
public void testTwoNodesNoEdge() {
// Graph: 0 1 (no edges)
Collection<Integer> nodes = Arrays.asList(0, 1);
List<int[]> edges = List.of();
KargerMinCut.KargerOutput result = KargerMinCut.findMinCut(nodes, edges);
assertEquals(0, result.minCut());
assertTrue(result.first().contains(0) || result.first().contains(1));
assertTrue(result.second().contains(0) || result.second().contains(1));
}
@Test
public void testComplexGraph() {
// Nodes: 0, 1, 2, 3, 4, 5, 6, 7, 8
// Edges: Fully connected graph with additional edges for complexity
Collection<Integer> nodes = Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7, 8);
List<int[]> edges = List.of(new int[] {0, 1}, new int[] {0, 2}, new int[] {0, 3}, new int[] {0, 4}, new int[] {0, 5}, new int[] {1, 2}, new int[] {1, 3}, new int[] {1, 4}, new int[] {1, 5}, new int[] {1, 6}, new int[] {2, 3}, new int[] {2, 4}, new int[] {2, 5}, new int[] {2, 6},
new int[] {2, 7}, new int[] {3, 4}, new int[] {3, 5}, new int[] {3, 6}, new int[] {3, 7}, new int[] {3, 8}, new int[] {4, 5}, new int[] {4, 6}, new int[] {4, 7}, new int[] {4, 8}, new int[] {5, 6}, new int[] {5, 7}, new int[] {5, 8}, new int[] {6, 7}, new int[] {6, 8}, new int[] {7, 8},
new int[] {0, 6}, new int[] {1, 7}, new int[] {2, 8});
KargerMinCut.KargerOutput result = KargerMinCut.findMinCut(nodes, edges);
// The exact minimum cut value depends on the randomization, but it should be consistent
// for this graph structure. For a fully connected graph, the minimum cut is typically
// determined by the smallest number of edges connecting two partitions.
assertTrue(result.minCut() > 0);
}
}