mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-24 04:54:21 +08:00
67 lines
1.7 KiB
Java
67 lines
1.7 KiB
Java
package com.thealgorithms.ciphers;
|
|
|
|
import java.math.BigInteger;
|
|
import java.security.SecureRandom;
|
|
|
|
/**
|
|
* @author Nguyen Duy Tiep on 23-Oct-17.
|
|
*/
|
|
public class RSA {
|
|
|
|
private BigInteger modulus;
|
|
private BigInteger privateKey;
|
|
private BigInteger publicKey;
|
|
|
|
public RSA(int bits) {
|
|
generateKeys(bits);
|
|
}
|
|
|
|
/**
|
|
* @return encrypted message
|
|
*/
|
|
public synchronized String encrypt(String message) {
|
|
return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
|
|
}
|
|
|
|
/**
|
|
* @return encrypted message as big integer
|
|
*/
|
|
public synchronized BigInteger encrypt(BigInteger message) {
|
|
return message.modPow(publicKey, modulus);
|
|
}
|
|
|
|
/**
|
|
* @return plain message
|
|
*/
|
|
public synchronized String decrypt(String encryptedMessage) {
|
|
return new String((new BigInteger(encryptedMessage)).modPow(privateKey, modulus).toByteArray());
|
|
}
|
|
|
|
/**
|
|
* @return plain message as big integer
|
|
*/
|
|
public synchronized BigInteger decrypt(BigInteger encryptedMessage) {
|
|
return encryptedMessage.modPow(privateKey, modulus);
|
|
}
|
|
|
|
/**
|
|
* Generate a new public and private key set.
|
|
*/
|
|
public final synchronized void generateKeys(int bits) {
|
|
SecureRandom r = new SecureRandom();
|
|
BigInteger p = new BigInteger(bits / 2, 100, r);
|
|
BigInteger q = new BigInteger(bits / 2, 100, r);
|
|
modulus = p.multiply(q);
|
|
|
|
BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
|
|
|
|
publicKey = BigInteger.valueOf(3L);
|
|
|
|
while (m.gcd(publicKey).intValue() > 1) {
|
|
publicKey = publicKey.add(BigInteger.TWO);
|
|
}
|
|
|
|
privateKey = publicKey.modInverse(m);
|
|
}
|
|
}
|