package com.thealgorithms.ciphers; import java.math.BigInteger; import java.security.SecureRandom; /** * @author Nguyen Duy Tiep on 23-Oct-17. */ public class RSA { private BigInteger modulus; private BigInteger privateKey; private BigInteger publicKey; public RSA(int bits) { generateKeys(bits); } /** * @return encrypted message */ public synchronized String encrypt(String message) { return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString(); } /** * @return encrypted message as big integer */ public synchronized BigInteger encrypt(BigInteger message) { return message.modPow(publicKey, modulus); } /** * @return plain message */ public synchronized String decrypt(String encryptedMessage) { return new String((new BigInteger(encryptedMessage)).modPow(privateKey, modulus).toByteArray()); } /** * @return plain message as big integer */ public synchronized BigInteger decrypt(BigInteger encryptedMessage) { return encryptedMessage.modPow(privateKey, modulus); } /** * Generate a new public and private key set. */ public final synchronized void generateKeys(int bits) { SecureRandom r = new SecureRandom(); BigInteger p = new BigInteger(bits / 2, 100, r); BigInteger q = new BigInteger(bits / 2, 100, r); modulus = p.multiply(q); BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE)); publicKey = BigInteger.valueOf(3L); while (m.gcd(publicKey).intValue() > 1) { publicKey = publicKey.add(BigInteger.TWO); } privateKey = publicKey.modInverse(m); } }