mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-07 01:35:16 +08:00
Add tests, remove main
, add negativity test in Fibonacci.java
(#5645)
This commit is contained in:
@ -2,7 +2,6 @@ package com.thealgorithms.dynamicprogramming;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.Scanner;
|
||||
|
||||
/**
|
||||
* @author Varun Upadhyay (https://github.com/varunu28)
|
||||
@ -11,27 +10,19 @@ public final class Fibonacci {
|
||||
private Fibonacci() {
|
||||
}
|
||||
|
||||
private static final Map<Integer, Integer> CACHE = new HashMap<>();
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Methods all returning [0, 1, 1, 2, 3, 5, ...] for n = [0, 1, 2, 3, 4, 5, ...]
|
||||
Scanner sc = new Scanner(System.in);
|
||||
int n = sc.nextInt();
|
||||
|
||||
System.out.println(fibMemo(n));
|
||||
System.out.println(fibBotUp(n));
|
||||
System.out.println(fibOptimized(n));
|
||||
System.out.println(fibBinet(n));
|
||||
sc.close();
|
||||
}
|
||||
static final Map<Integer, Integer> CACHE = new HashMap<>();
|
||||
|
||||
/**
|
||||
* This method finds the nth fibonacci number using memoization technique
|
||||
*
|
||||
* @param n The input n for which we have to determine the fibonacci number
|
||||
* Outputs the nth fibonacci number
|
||||
* @throws IllegalArgumentException if n is negative
|
||||
*/
|
||||
public static int fibMemo(int n) {
|
||||
if (n < 0) {
|
||||
throw new IllegalArgumentException("Input n must be non-negative");
|
||||
}
|
||||
if (CACHE.containsKey(n)) {
|
||||
return CACHE.get(n);
|
||||
}
|
||||
@ -52,8 +43,12 @@ public final class Fibonacci {
|
||||
*
|
||||
* @param n The input n for which we have to determine the fibonacci number
|
||||
* Outputs the nth fibonacci number
|
||||
* @throws IllegalArgumentException if n is negative
|
||||
*/
|
||||
public static int fibBotUp(int n) {
|
||||
if (n < 0) {
|
||||
throw new IllegalArgumentException("Input n must be non-negative");
|
||||
}
|
||||
Map<Integer, Integer> fib = new HashMap<>();
|
||||
|
||||
for (int i = 0; i <= n; i++) {
|
||||
@ -80,9 +75,13 @@ public final class Fibonacci {
|
||||
* Time Complexity will be O(n)
|
||||
* <p>
|
||||
* Whereas , the above functions will take O(n) Space.
|
||||
* @throws IllegalArgumentException if n is negative
|
||||
* @author Shoaib Rayeen (https://github.com/shoaibrayeen)
|
||||
*/
|
||||
public static int fibOptimized(int n) {
|
||||
if (n < 0) {
|
||||
throw new IllegalArgumentException("Input n must be non-negative");
|
||||
}
|
||||
if (n == 0) {
|
||||
return 0;
|
||||
}
|
||||
@ -105,9 +104,14 @@ public final class Fibonacci {
|
||||
* = 1.6180339887... Now, let's look at Binet's formula: Sn = Φⁿ–(– Φ⁻ⁿ)/√5 We first calculate
|
||||
* the squareRootof5 and phi and store them in variables. Later, we apply Binet's formula to get
|
||||
* the required term. Time Complexity will be O(1)
|
||||
* @param n The input n for which we have to determine the fibonacci number
|
||||
* Outputs the nth fibonacci number
|
||||
* @throws IllegalArgumentException if n is negative
|
||||
*/
|
||||
|
||||
public static int fibBinet(int n) {
|
||||
if (n < 0) {
|
||||
throw new IllegalArgumentException("Input n must be non-negative");
|
||||
}
|
||||
double squareRootOf5 = Math.sqrt(5);
|
||||
double phi = (1 + squareRootOf5) / 2;
|
||||
return (int) ((Math.pow(phi, n) - Math.pow(-phi, -n)) / squareRootOf5);
|
||||
|
Reference in New Issue
Block a user