mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
feat: add Sieve of Eratosthenes algorithm (#7071)
* feat: add Sieve of Eratosthenes algorithm - Implement Sieve of Eratosthenes for finding prime numbers up to n - Add comprehensive unit tests with edge cases - Include JavaDoc documentation - Time complexity: O(n log log n) - Space complexity: O(n) Resolves #6939 * fix: remove trailing spaces * fix: apply clang-format
This commit is contained in:
committed by
GitHub
parent
93811614b8
commit
c6880c195d
@@ -1,66 +1,82 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @brief utility class implementing <a href="https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes">Sieve of Eratosthenes</a>
|
||||
* Sieve of Eratosthenes Algorithm
|
||||
* An efficient algorithm to find all prime numbers up to a given limit.
|
||||
*
|
||||
* Algorithm:
|
||||
* 1. Create a boolean array of size n+1, initially all true
|
||||
* 2. Mark 0 and 1 as not prime
|
||||
* 3. For each number i from 2 to sqrt(n):
|
||||
* - If i is still marked as prime
|
||||
* - Mark all multiples of i (starting from i²) as not prime
|
||||
* 4. Collect all numbers still marked as prime
|
||||
*
|
||||
* Time Complexity: O(n log log n)
|
||||
* Space Complexity: O(n)
|
||||
*
|
||||
* @author Navadeep0007
|
||||
* @see <a href="https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes">Sieve of Eratosthenes</a>
|
||||
*/
|
||||
public final class SieveOfEratosthenes {
|
||||
|
||||
private SieveOfEratosthenes() {
|
||||
// Utility class, prevent instantiation
|
||||
}
|
||||
|
||||
private static void checkInput(int n) {
|
||||
if (n <= 0) {
|
||||
throw new IllegalArgumentException("n must be positive.");
|
||||
/**
|
||||
* Finds all prime numbers up to n using the Sieve of Eratosthenes algorithm
|
||||
*
|
||||
* @param n the upper limit (inclusive)
|
||||
* @return a list of all prime numbers from 2 to n
|
||||
* @throws IllegalArgumentException if n is negative
|
||||
*/
|
||||
public static List<Integer> findPrimes(int n) {
|
||||
if (n < 0) {
|
||||
throw new IllegalArgumentException("Input must be non-negative");
|
||||
}
|
||||
}
|
||||
|
||||
private static Type[] sievePrimesTill(int n) {
|
||||
checkInput(n);
|
||||
Type[] isPrimeArray = new Type[n + 1];
|
||||
Arrays.fill(isPrimeArray, Type.PRIME);
|
||||
isPrimeArray[0] = Type.NOT_PRIME;
|
||||
isPrimeArray[1] = Type.NOT_PRIME;
|
||||
if (n < 2) {
|
||||
return new ArrayList<>();
|
||||
}
|
||||
|
||||
double cap = Math.sqrt(n);
|
||||
for (int i = 2; i <= cap; i++) {
|
||||
if (isPrimeArray[i] == Type.PRIME) {
|
||||
for (int j = 2; i * j <= n; j++) {
|
||||
isPrimeArray[i * j] = Type.NOT_PRIME;
|
||||
// Create boolean array, initially all true
|
||||
boolean[] isPrime = new boolean[n + 1];
|
||||
for (int i = 2; i <= n; i++) {
|
||||
isPrime[i] = true;
|
||||
}
|
||||
|
||||
// Sieve process
|
||||
for (int i = 2; i * i <= n; i++) {
|
||||
if (isPrime[i]) {
|
||||
// Mark all multiples of i as not prime
|
||||
for (int j = i * i; j <= n; j += i) {
|
||||
isPrime[j] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return isPrimeArray;
|
||||
}
|
||||
|
||||
private static int countPrimes(Type[] isPrimeArray) {
|
||||
return (int) Arrays.stream(isPrimeArray).filter(element -> element == Type.PRIME).count();
|
||||
}
|
||||
|
||||
private static int[] extractPrimes(Type[] isPrimeArray) {
|
||||
int numberOfPrimes = countPrimes(isPrimeArray);
|
||||
int[] primes = new int[numberOfPrimes];
|
||||
int primeIndex = 0;
|
||||
for (int curNumber = 0; curNumber < isPrimeArray.length; ++curNumber) {
|
||||
if (isPrimeArray[curNumber] == Type.PRIME) {
|
||||
primes[primeIndex++] = curNumber;
|
||||
// Collect all prime numbers
|
||||
List<Integer> primes = new ArrayList<>();
|
||||
for (int i = 2; i <= n; i++) {
|
||||
if (isPrime[i]) {
|
||||
primes.add(i);
|
||||
}
|
||||
}
|
||||
|
||||
return primes;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief finds all of the prime numbers up to the given upper (inclusive) limit
|
||||
* @param n upper (inclusive) limit
|
||||
* @exception IllegalArgumentException n is non-positive
|
||||
* @return the array of all primes up to the given number (inclusive)
|
||||
* Counts the number of prime numbers up to n
|
||||
*
|
||||
* @param n the upper limit (inclusive)
|
||||
* @return count of prime numbers from 2 to n
|
||||
*/
|
||||
public static int[] findPrimesTill(int n) {
|
||||
return extractPrimes(sievePrimesTill(n));
|
||||
}
|
||||
|
||||
private enum Type {
|
||||
PRIME,
|
||||
NOT_PRIME,
|
||||
public static int countPrimes(int n) {
|
||||
return findPrimes(n).size();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,46 +1,64 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertThrows;
|
||||
import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
/**
|
||||
* Test cases for Sieve of Eratosthenes algorithm
|
||||
*
|
||||
* @author Navadeep0007
|
||||
*/
|
||||
class SieveOfEratosthenesTest {
|
||||
|
||||
@Test
|
||||
public void testfFindPrimesTill1() {
|
||||
assertArrayEquals(new int[] {}, SieveOfEratosthenes.findPrimesTill(1));
|
||||
void testPrimesUpTo10() {
|
||||
List<Integer> expected = Arrays.asList(2, 3, 5, 7);
|
||||
assertEquals(expected, SieveOfEratosthenes.findPrimes(10));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testfFindPrimesTill2() {
|
||||
assertArrayEquals(new int[] {2}, SieveOfEratosthenes.findPrimesTill(2));
|
||||
void testPrimesUpTo30() {
|
||||
List<Integer> expected = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29);
|
||||
assertEquals(expected, SieveOfEratosthenes.findPrimes(30));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testfFindPrimesTill4() {
|
||||
var primesTill4 = new int[] {2, 3};
|
||||
assertArrayEquals(primesTill4, SieveOfEratosthenes.findPrimesTill(3));
|
||||
assertArrayEquals(primesTill4, SieveOfEratosthenes.findPrimesTill(4));
|
||||
void testPrimesUpTo2() {
|
||||
List<Integer> expected = Arrays.asList(2);
|
||||
assertEquals(expected, SieveOfEratosthenes.findPrimes(2));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testfFindPrimesTill40() {
|
||||
var primesTill40 = new int[] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
|
||||
assertArrayEquals(primesTill40, SieveOfEratosthenes.findPrimesTill(37));
|
||||
assertArrayEquals(primesTill40, SieveOfEratosthenes.findPrimesTill(38));
|
||||
assertArrayEquals(primesTill40, SieveOfEratosthenes.findPrimesTill(39));
|
||||
assertArrayEquals(primesTill40, SieveOfEratosthenes.findPrimesTill(40));
|
||||
void testPrimesUpTo1() {
|
||||
assertTrue(SieveOfEratosthenes.findPrimes(1).isEmpty());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testfFindPrimesTill240() {
|
||||
var primesTill240 = new int[] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239};
|
||||
assertArrayEquals(primesTill240, SieveOfEratosthenes.findPrimesTill(239));
|
||||
assertArrayEquals(primesTill240, SieveOfEratosthenes.findPrimesTill(240));
|
||||
void testPrimesUpTo0() {
|
||||
assertTrue(SieveOfEratosthenes.findPrimes(0).isEmpty());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFindPrimesTillThrowsExceptionForNonPositiveInput() {
|
||||
assertThrows(IllegalArgumentException.class, () -> SieveOfEratosthenes.findPrimesTill(0));
|
||||
void testNegativeInput() {
|
||||
assertThrows(IllegalArgumentException.class, () -> { SieveOfEratosthenes.findPrimes(-1); });
|
||||
}
|
||||
|
||||
@Test
|
||||
void testCountPrimes() {
|
||||
assertEquals(4, SieveOfEratosthenes.countPrimes(10));
|
||||
assertEquals(25, SieveOfEratosthenes.countPrimes(100));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testLargeNumber() {
|
||||
List<Integer> primes = SieveOfEratosthenes.findPrimes(1000);
|
||||
assertEquals(168, primes.size()); // There are 168 primes up to 1000
|
||||
assertEquals(2, primes.get(0)); // First prime
|
||||
assertEquals(997, primes.get(primes.size() - 1)); // Last prime up to 1000
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user