Adding PiApproximation algo (#6602)

* Adding PiApproximation algo

* Added clang formatting

* Added private method

* checkstyle fix

* checkstyle fix

---------

Co-authored-by: Deniz Altunkapan <93663085+DenizAltunkapan@users.noreply.github.com>
This commit is contained in:
Yash Rajput
2025-10-08 17:46:14 +05:30
committed by GitHub
parent 5f8d8eeb7b
commit b031a0bbba
2 changed files with 243 additions and 0 deletions

View File

@@ -0,0 +1,74 @@
package com.thealgorithms.maths;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
/**
* Implementation to calculate an estimate of the number π (Pi).
*
* We take a random point P with coordinates (x, y) such that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
* If x² + y² ≤ 1, then the point is inside the quarter disk of radius 1,
* else the point is outside. We know that the probability of the point being
* inside the quarter disk is equal to π/4.
*
*
* @author [Yash Rajput](https://github.com/the-yash-rajput)
*/
public final class PiApproximation {
private PiApproximation() {
throw new AssertionError("No instances.");
}
/**
* Structure representing a point with coordinates (x, y)
* where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
*/
static class Point {
double x;
double y;
Point(double x, double y) {
this.x = x;
this.y = y;
}
}
/**
* This function uses the points in a given list (drawn at random)
* to return an approximation of the number π.
*
* @param pts List of points where each point contains x and y coordinates
* @return An estimate of the number π
*/
public static double approximatePi(List<Point> pts) {
double count = 0; // Points in circle
for (Point p : pts) {
if ((p.x * p.x) + (p.y * p.y) <= 1) {
count++;
}
}
return 4.0 * count / pts.size();
}
/**
* Generates random points for testing the Pi approximation.
*
* @param numPoints Number of random points to generate
* @return List of random points
*/
public static List<Point> generateRandomPoints(int numPoints) {
List<Point> points = new ArrayList<>();
Random rand = new Random();
for (int i = 0; i < numPoints; i++) {
double x = rand.nextDouble(); // Random value between 0 and 1
double y = rand.nextDouble(); // Random value between 0 and 1
points.add(new Point(x, y));
}
return points;
}
}

View File

@@ -0,0 +1,169 @@
package com.thealgorithms.maths;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
import java.util.ArrayList;
import java.util.List;
import org.junit.jupiter.api.Test;
class PiApproximationTest {
private static final double DELTA = 0.5; // Tolerance for Pi approximation
private static final double TIGHT_DELTA = 0.1; // Tighter tolerance for large samples
/**
* Test with known points that are all inside the quarter circle.
*/
@Test
public void testAllPointsInside() {
List<PiApproximation.Point> points = new ArrayList<>();
points.add(new PiApproximation.Point(0.0, 0.0)); // Origin
points.add(new PiApproximation.Point(0.5, 0.5)); // Inside
points.add(new PiApproximation.Point(0.3, 0.3)); // Inside
double result = PiApproximation.approximatePi(points);
// All points inside, so result should be 4.0
assertEquals(4.0, result, 0.001);
}
/**
* Test with known points that are all outside the quarter circle.
*/
@Test
public void testAllPointsOutside() {
List<PiApproximation.Point> points = new ArrayList<>();
points.add(new PiApproximation.Point(1.0, 1.0)); // Corner - outside
points.add(new PiApproximation.Point(0.9, 0.9)); // Outside
double result = PiApproximation.approximatePi(points);
// No points inside, so result should be 0.0
assertEquals(0.0, result, 0.001);
}
/**
* Test with mixed points (some inside, some outside).
*/
@Test
public void testMixedPoints() {
List<PiApproximation.Point> points = new ArrayList<>();
// Inside points
points.add(new PiApproximation.Point(0.0, 0.0));
points.add(new PiApproximation.Point(0.5, 0.5));
// Outside points
points.add(new PiApproximation.Point(1.0, 1.0));
points.add(new PiApproximation.Point(0.9, 0.9));
double result = PiApproximation.approximatePi(points);
// 2 out of 4 points inside: 4 * 2/4 = 2.0
assertEquals(2.0, result, 0.001);
}
/**
* Test with boundary point (on the circle).
*/
@Test
public void testBoundaryPoint() {
List<PiApproximation.Point> points = new ArrayList<>();
points.add(new PiApproximation.Point(1.0, 0.0)); // On circle: x² + y² = 1
points.add(new PiApproximation.Point(0.0, 1.0)); // On circle
double result = PiApproximation.approximatePi(points);
// Boundary points should be counted as inside (≤ 1)
assertEquals(4.0, result, 0.001);
}
/**
* Test with small random sample (moderate accuracy expected).
*/
@Test
public void testSmallRandomSample() {
List<PiApproximation.Point> points = PiApproximation.generateRandomPoints(1000);
double result = PiApproximation.approximatePi(points);
// With 1000 points, result should be reasonably close to π
assertEquals(Math.PI, result, DELTA);
}
/**
* Test with large random sample (better accuracy expected).
*/
@Test
public void testLargeRandomSample() {
List<PiApproximation.Point> points = PiApproximation.generateRandomPoints(100000);
double result = PiApproximation.approximatePi(points);
// With 100000 points, result should be very close to π
assertEquals(Math.PI, result, TIGHT_DELTA);
}
/**
* Test that result is always positive.
*/
@Test
public void testResultIsPositive() {
List<PiApproximation.Point> points = PiApproximation.generateRandomPoints(1000);
double result = PiApproximation.approximatePi(points);
assertTrue(result >= 0, "Pi approximation should be positive");
}
/**
* Test that result is bounded (0 ≤ result ≤ 4).
*/
@Test
public void testResultIsBounded() {
List<PiApproximation.Point> points = PiApproximation.generateRandomPoints(1000);
double result = PiApproximation.approximatePi(points);
assertTrue(result >= 0 && result <= 4, "Pi approximation should be between 0 and 4");
}
/**
* Test with single point inside.
*/
@Test
public void testSinglePointInside() {
List<PiApproximation.Point> points = new ArrayList<>();
points.add(new PiApproximation.Point(0.0, 0.0));
double result = PiApproximation.approximatePi(points);
assertEquals(4.0, result, 0.001);
}
/**
* Test with single point outside.
*/
@Test
public void testSinglePointOutside() {
List<PiApproximation.Point> points = new ArrayList<>();
points.add(new PiApproximation.Point(1.0, 1.0));
double result = PiApproximation.approximatePi(points);
assertEquals(0.0, result, 0.001);
}
/**
* Test that generated points are within valid range [0, 1].
*/
@Test
public void testGeneratedPointsInRange() {
List<PiApproximation.Point> points = PiApproximation.generateRandomPoints(100);
for (PiApproximation.Point p : points) {
assertTrue(p.x >= 0 && p.x <= 1, "X coordinate should be between 0 and 1");
assertTrue(p.y >= 0 && p.y <= 1, "Y coordinate should be between 0 and 1");
}
}
/**
* Test that the correct number of points are generated.
*/
@Test
public void testCorrectNumberOfPointsGenerated() {
int expectedSize = 500;
List<PiApproximation.Point> points = PiApproximation.generateRandomPoints(expectedSize);
assertEquals(expectedSize, points.size());
}
}