mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-10 13:39:08 +08:00
52
Backtracking/PowerSum.java
Normal file
52
Backtracking/PowerSum.java
Normal file
@ -0,0 +1,52 @@
|
||||
package Backtracking;
|
||||
|
||||
import java.util.Scanner;
|
||||
/*
|
||||
* Problem Statement :
|
||||
* Find the number of ways that a given integer, N , can be expressed as the sum of the Xth powers of unique, natural numbers.
|
||||
* For example, if N=100 and X=3, we have to find all combinations of unique cubes adding up to 100. The only solution is 1^3+2^3+3^3+4^3.
|
||||
* Therefore output will be 1.
|
||||
*/
|
||||
public class PowerSum {
|
||||
|
||||
public static void main(String[] args) {
|
||||
Scanner sc = new Scanner(System.in);
|
||||
System.out.println("Enter the number and the power");
|
||||
int N = sc.nextInt();
|
||||
int X = sc.nextInt();
|
||||
PowerSum ps = new PowerSum();
|
||||
int count = ps.powSum(N,X);
|
||||
//printing the answer.
|
||||
System.out.println("Number of combinations of different natural number's raised to "+X+" having sum "+N+" are : ");
|
||||
System.out.println(count);
|
||||
sc.close();
|
||||
}
|
||||
private int count = 0,sum=0;
|
||||
public int powSum(int N, int X) {
|
||||
Sum(N,X,1);
|
||||
return count;
|
||||
}
|
||||
//here i is the natural number which will be raised by X and added in sum.
|
||||
public void Sum(int N, int X,int i) {
|
||||
//if sum is equal to N that is one of our answer and count is increased.
|
||||
if(sum == N) {
|
||||
count++;
|
||||
return;
|
||||
}
|
||||
//we will be adding next natural number raised to X only if on adding it in sum the result is less than N.
|
||||
else if(sum+power(i,X)<=N) {
|
||||
sum+=power(i,X);
|
||||
Sum(N,X,i+1);
|
||||
//backtracking and removing the number added last since no possible combination is there with it.
|
||||
sum-=power(i,X);
|
||||
}
|
||||
if(power(i,X)<N) {
|
||||
//calling the sum function with next natural number after backtracking if when it is raised to X is still less than X.
|
||||
Sum(N,X,i+1);
|
||||
}
|
||||
}
|
||||
//creating a separate power function so that it can be used again and again when required.
|
||||
private int power(int a , int b ){
|
||||
return (int)Math.pow(a,b);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user