mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-07 01:35:16 +08:00
Merge pull request #548 from thakursaurabh1998/minimum-priority-queue-thakursaurabh
Minimum priority queue added alongside heap sort implementation
This commit is contained in:
131
DataStructures/Heaps/MinPriorityQueue.java
Normal file
131
DataStructures/Heaps/MinPriorityQueue.java
Normal file
@ -0,0 +1,131 @@
|
||||
|
||||
/* Minimum Priority Queue
|
||||
* It is a part of heap data structure
|
||||
* A heap is a specific tree based data structure
|
||||
* in which all the nodes of tree are in a specific order.
|
||||
* that is the children are arranged in some
|
||||
* respect of their parents, can either be greater
|
||||
* or less than the parent. This makes it a min priority queue
|
||||
* or max priority queue.
|
||||
*/
|
||||
|
||||
// Functions: insert, delete, peek, isEmpty, print, heapSort, sink
|
||||
|
||||
public class MinPriorityQueue {
|
||||
private int[] heap;
|
||||
private int capacity;
|
||||
private int size;
|
||||
|
||||
// calss the constructor and initializes the capacity
|
||||
MinPriorityQueue(int c) {
|
||||
this.capacity = c;
|
||||
this.size = 0;
|
||||
this.heap = new int[c + 1];
|
||||
}
|
||||
|
||||
// inserts the key at the end and rearranges it
|
||||
// so that the binary heap is in appropriate order
|
||||
public void insert(int key) {
|
||||
if (this.isFull())
|
||||
return;
|
||||
this.heap[this.size + 1] = key;
|
||||
int k = this.size + 1;
|
||||
while (k > 1) {
|
||||
if (this.heap[k] < this.heap[k / 2]) {
|
||||
int temp = this.heap[k];
|
||||
this.heap[k] = this.heap[k / 2];
|
||||
this.heap[k / 2] = temp;
|
||||
}
|
||||
k = k / 2;
|
||||
}
|
||||
this.size++;
|
||||
}
|
||||
|
||||
// returns the highest priority value
|
||||
public int peek() {
|
||||
return this.heap[1];
|
||||
}
|
||||
|
||||
// returns boolean value whether the heap is empty or not
|
||||
public boolean isEmpty() {
|
||||
if (0 == this.size)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// returns boolean value whether the heap is full or not
|
||||
public boolean isFull() {
|
||||
if (this.size == this.capacity)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// prints the heap
|
||||
public void print() {
|
||||
for (int i = 1; i <= this.capacity; i++)
|
||||
System.out.print(this.heap[i] + " ");
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
// heap sorting can be done by performing
|
||||
// delete function to the number of times of the size of the heap
|
||||
// it returns reverse sort because it is a min priority queue
|
||||
public void heapSort() {
|
||||
for (int i = 1; i < this.capacity; i++)
|
||||
this.delete();
|
||||
}
|
||||
|
||||
// this function reorders the heap after every delete function
|
||||
private void sink() {
|
||||
int k = 1;
|
||||
while (2 * k <= this.size || 2 * k + 1 <= this.size) {
|
||||
int minIndex;
|
||||
if (this.heap[2 * k] >= this.heap[k]) {
|
||||
if (2 * k + 1 <= this.size && this.heap[2 * k + 1] >= this.heap[k]) {
|
||||
break;
|
||||
} else if (2 * k + 1 > this.size) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (2 * k + 1 > this.size) {
|
||||
minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k;
|
||||
} else {
|
||||
if (this.heap[k] > this.heap[2 * k] || this.heap[k] > this.heap[2 * k + 1]) {
|
||||
minIndex = this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1;
|
||||
} else {
|
||||
minIndex = k;
|
||||
}
|
||||
}
|
||||
int temp = this.heap[k];
|
||||
this.heap[k] = this.heap[minIndex];
|
||||
this.heap[minIndex] = temp;
|
||||
k = minIndex;
|
||||
}
|
||||
}
|
||||
|
||||
// deletes the highest priority value from the heap
|
||||
public int delete() {
|
||||
int min = this.heap[1];
|
||||
this.heap[1] = this.heap[this.size];
|
||||
this.heap[this.size] = min;
|
||||
this.size--;
|
||||
this.sink();
|
||||
return min;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// testing
|
||||
MinPriorityQueue q = new MinPriorityQueue(8);
|
||||
q.insert(5);
|
||||
q.insert(2);
|
||||
q.insert(4);
|
||||
q.insert(1);
|
||||
q.insert(7);
|
||||
q.insert(6);
|
||||
q.insert(3);
|
||||
q.insert(8);
|
||||
q.print(); // [ 1, 2, 3, 5, 7, 6, 4, 8 ]
|
||||
q.heapSort();
|
||||
q.print(); // [ 8, 7, 6, 5, 4, 3, 2, 1 ]
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user