Add tests, remove main in UnionFind (#5678)

This commit is contained in:
Hardik Pawar
2024-10-11 01:37:02 +05:30
committed by GitHub
parent fb11d455dd
commit 401d87365e
3 changed files with 126 additions and 27 deletions

View File

@ -1019,6 +1019,7 @@
* [SortOrderAgnosticBinarySearchTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/searches/SortOrderAgnosticBinarySearchTest.java)
* [SquareRootBinarySearchTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/searches/SquareRootBinarySearchTest.java)
* [TestSearchInARowAndColWiseSortedMatrix](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/searches/TestSearchInARowAndColWiseSortedMatrix.java)
* [UnionFindTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/searches/UnionFindTest.java)
* sorts
* [BeadSortTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/sorts/BeadSortTest.java)
* [BinaryInsertionSortTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/sorts/BinaryInsertionSortTest.java)

View File

@ -4,11 +4,28 @@ import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* The Union-Find data structure, also known as Disjoint Set Union (DSU),
* is a data structure that tracks a set of elements partitioned into
* disjoint (non-overlapping) subsets. It supports two main operations:
*
* 1. **Find**: Determine which subset a particular element is in.
* 2. **Union**: Join two subsets into a single subset.
*
* This implementation uses path compression in the `find` operation
* and union by rank in the `union` operation for efficiency.
*/
public class UnionFind {
private final int[] p;
private final int[] r;
private final int[] p; // Parent array
private final int[] r; // Rank array
/**
* Initializes a Union-Find data structure with n elements.
* Each element is its own parent initially.
*
* @param n the number of elements
*/
public UnionFind(int n) {
p = new int[n];
r = new int[n];
@ -18,6 +35,13 @@ public class UnionFind {
}
}
/**
* Finds the root of the set containing the element i.
* Uses path compression to flatten the structure.
*
* @param i the element to find
* @return the root of the set
*/
public int find(int i) {
int parent = p[i];
@ -25,12 +49,19 @@ public class UnionFind {
return i;
}
// Path compression
final int result = find(parent);
p[i] = result;
return result;
}
/**
* Unites the sets containing elements x and y.
* Uses union by rank to attach the smaller tree under the larger tree.
*
* @param x the first element
* @param y the second element
*/
public void union(int x, int y) {
int r0 = find(x);
int r1 = find(y);
@ -39,6 +70,7 @@ public class UnionFind {
return;
}
// Union by rank
if (r[r0] > r[r1]) {
p[r1] = r0;
} else if (r[r1] > r[r0]) {
@ -49,39 +81,24 @@ public class UnionFind {
}
}
/**
* Counts the number of disjoint sets.
*
* @return the number of disjoint sets
*/
public int count() {
List<Integer> parents = new ArrayList<>();
for (int i = 0; i < p.length; i++) {
if (!parents.contains(find(i))) {
parents.add(find(i));
int root = find(i);
if (!parents.contains(root)) {
parents.add(root);
}
}
return parents.size();
}
@Override
public String toString() {
return "p " + Arrays.toString(p) + " r " + Arrays.toString(r) + "\n";
}
// Tests
public static void main(String[] args) {
UnionFind uf = new UnionFind(5);
System.out.println("init /w 5 (should print 'p [0, 1, 2, 3, 4] r [0, 0, 0, 0, 0]'):");
System.out.println(uf);
uf.union(1, 2);
System.out.println("union 1 2 (should print 'p [0, 1, 1, 3, 4] r [0, 1, 0, 0, 0]'):");
System.out.println(uf);
uf.union(3, 4);
System.out.println("union 3 4 (should print 'p [0, 1, 1, 3, 3] r [0, 1, 0, 1, 0]'):");
System.out.println(uf);
uf.find(4);
System.out.println("find 4 (should print 'p [0, 1, 1, 3, 3] r [0, 1, 0, 1, 0]'):");
System.out.println(uf);
System.out.println("count (should print '3'):");
System.out.println(uf.count());
}
}

View File

@ -0,0 +1,81 @@
package com.thealgorithms.searches;
import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
class UnionFindTest {
private UnionFind uf;
@BeforeEach
void setUp() {
uf = new UnionFind(10); // Initialize with 10 elements
}
@Test
void testInitialState() {
// Verify that each element is its own parent and rank is 0
assertEquals("p [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] r [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n", uf.toString());
assertEquals(10, uf.count(), "Initial count of disjoint sets should be 10.");
}
@Test
void testUnionOperation() {
uf.union(0, 1);
uf.union(1, 2);
assertEquals(8, uf.count(), "Count should decrease after unions.");
assertEquals(0, uf.find(2), "Element 2 should point to root 0 after unions.");
}
@Test
void testUnionWithRank() {
uf.union(0, 1);
uf.union(1, 2); // Make 0 the root of 2
uf.union(3, 4);
uf.union(4, 5); // Make 3 the root of 5
uf.union(0, 3); // Union two trees
assertEquals(5, uf.count(), "Count should decrease after unions.");
assertEquals(0, uf.find(5), "Element 5 should point to root 0 after unions.");
}
@Test
void testFindOperation() {
uf.union(2, 3);
uf.union(4, 5);
uf.union(3, 5); // Connect 2-3 and 4-5
assertEquals(2, uf.find(3), "Find operation should return the root of the set.");
assertEquals(2, uf.find(5), "Find operation should return the root of the set.");
}
@Test
void testCountAfterMultipleUnions() {
uf.union(0, 1);
uf.union(2, 3);
uf.union(4, 5);
uf.union(1, 3); // Connect 0-1-2-3
uf.union(5, 6);
assertEquals(5, uf.count(), "Count should reflect the number of disjoint sets after multiple unions.");
}
@Test
void testNoUnion() {
assertEquals(10, uf.count(), "Count should remain 10 if no unions are made.");
}
@Test
void testUnionSameSet() {
uf.union(1, 2);
uf.union(1, 2); // Union same elements again
assertEquals(9, uf.count(), "Count should not decrease if union is called on the same set.");
}
@Test
void testFindOnSingleElement() {
assertEquals(7, uf.find(7), "Find on a single element should return itself.");
}
}