refactor: Enhance docs, code, add tests in KeithNumber (#6748)

* refactor: Enhance docs, code, add tests in `KeithNumber`

* Fix

---------

Co-authored-by: a <alexanderklmn@gmail.com>
This commit is contained in:
Hardik Pawar
2025-10-13 03:07:24 +05:30
committed by GitHub
parent 297634d05f
commit 387ecef310
2 changed files with 231 additions and 37 deletions

View File

@@ -4,57 +4,98 @@ import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;
final class KeithNumber {
/**
* A Keith number is an n-digit positive integer where the sequence formed by
* starting with its digits and repeatedly adding the previous n terms,
* eventually reaches the number itself.
*
* <p>
* For example:
* <ul>
* <li>14 is a Keith number: 1, 4, 5, 9, 14</li>
* <li>19 is a Keith number: 1, 9, 10, 19</li>
* <li>28 is a Keith number: 2, 8, 10, 18, 28</li>
* <li>197 is a Keith number: 1, 9, 7, 17, 33, 57, 107, 197</li>
* </ul>
*
* @see <a href="https://en.wikipedia.org/wiki/Keith_number">Keith Number -
* Wikipedia</a>
* @see <a href="https://mathworld.wolfram.com/KeithNumber.html">Keith Number -
* MathWorld</a>
*/
public final class KeithNumber {
private KeithNumber() {
}
// user-defined function that checks if the given number is Keith or not
static boolean isKeith(int x) {
// List stores all the digits of the X
ArrayList<Integer> terms = new ArrayList<>();
// n denotes the number of digits
int temp = x;
int n = 0;
// executes until the condition becomes false
while (temp > 0) {
// determines the last digit of the number and add it to the List
terms.add(temp % 10);
// removes the last digit
temp = temp / 10;
// increments the number of digits (n) by 1
n++;
/**
* Checks if a given number is a Keith number.
*
* <p>
* The algorithm works as follows:
* <ol>
* <li>Extract all digits of the number and store them in a list</li>
* <li>Generate subsequent terms by summing the last n digits</li>
* <li>Continue until a term equals or exceeds the original number</li>
* <li>If a term equals the number, it is a Keith number</li>
* </ol>
*
* @param number the number to check (must be positive)
* @return {@code true} if the number is a Keith number, {@code false} otherwise
* @throws IllegalArgumentException if the number is not positive
*/
public static boolean isKeith(int number) {
if (number <= 0) {
throw new IllegalArgumentException("Number must be positive");
}
// reverse the List
// Extract digits and store them in the list
ArrayList<Integer> terms = new ArrayList<>();
int temp = number;
int digitCount = 0;
while (temp > 0) {
terms.add(temp % 10);
temp = temp / 10;
digitCount++;
}
// Reverse the list to get digits in correct order
Collections.reverse(terms);
// Generate subsequent terms in the sequence
int nextTerm = 0;
int i = n;
// finds next term for the series
// loop executes until the condition returns true
while (nextTerm < x) {
int currentIndex = digitCount;
while (nextTerm < number) {
nextTerm = 0;
// next term is the sum of previous n terms (it depends on number of digits the number
// has)
for (int j = 1; j <= n; j++) {
nextTerm = nextTerm + terms.get(i - j);
// Sum the last 'digitCount' terms
for (int j = 1; j <= digitCount; j++) {
nextTerm = nextTerm + terms.get(currentIndex - j);
}
terms.add(nextTerm);
i++;
currentIndex++;
}
// when the control comes out of the while loop, there will be two conditions:
// either nextTerm will be equal to x or greater than x
// if equal, the given number is Keith, else not
return (nextTerm == x);
// Check if the generated term equals the original number
return (nextTerm == number);
}
// driver code
/**
* Main method for demonstrating Keith number detection.
* Reads a number from standard input and checks if it is a Keith number.
*
* @param args command line arguments (not used)
*/
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (isKeith(n)) {
System.out.println("Yes, the given number is a Keith number.");
Scanner scanner = new Scanner(System.in);
System.out.print("Enter a positive integer: ");
int number = scanner.nextInt();
if (isKeith(number)) {
System.out.println("Yes, " + number + " is a Keith number.");
} else {
System.out.println("No, the given number is not a Keith number.");
System.out.println("No, " + number + " is not a Keith number.");
}
in.close();
scanner.close();
}
}

View File

@@ -0,0 +1,153 @@
package com.thealgorithms.maths;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test;
/**
* Test cases for {@link KeithNumber}.
*/
class KeithNumberTest {
/**
* Tests single-digit Keith numbers.
* All single-digit numbers (1-9) are Keith numbers by definition.
*/
@Test
void testSingleDigitKeithNumbers() {
assertTrue(KeithNumber.isKeith(1));
assertTrue(KeithNumber.isKeith(2));
assertTrue(KeithNumber.isKeith(3));
assertTrue(KeithNumber.isKeith(4));
assertTrue(KeithNumber.isKeith(5));
assertTrue(KeithNumber.isKeith(6));
assertTrue(KeithNumber.isKeith(7));
assertTrue(KeithNumber.isKeith(8));
assertTrue(KeithNumber.isKeith(9));
}
/**
* Tests two-digit Keith numbers.
* Known two-digit Keith numbers: 14, 19, 28, 47, 61, 75.
*/
@Test
void testTwoDigitKeithNumbers() {
assertTrue(KeithNumber.isKeith(14));
assertTrue(KeithNumber.isKeith(19));
assertTrue(KeithNumber.isKeith(28));
assertTrue(KeithNumber.isKeith(47));
assertTrue(KeithNumber.isKeith(61));
assertTrue(KeithNumber.isKeith(75));
}
/**
* Tests three-digit Keith numbers.
* Known three-digit Keith numbers: 197, 742.
*/
@Test
void testThreeDigitKeithNumbers() {
assertTrue(KeithNumber.isKeith(197));
assertTrue(KeithNumber.isKeith(742));
}
/**
* Tests four-digit Keith numbers.
* Known four-digit Keith numbers: 1104, 1537, 2208, 2580, 3684, 4788, 7385,
* 7647, 7909.
*/
@Test
void testFourDigitKeithNumbers() {
assertTrue(KeithNumber.isKeith(1104));
assertTrue(KeithNumber.isKeith(1537));
assertTrue(KeithNumber.isKeith(2208));
}
/**
* Tests two-digit non-Keith numbers.
*/
@Test
void testTwoDigitNonKeithNumbers() {
assertFalse(KeithNumber.isKeith(10));
assertFalse(KeithNumber.isKeith(11));
assertFalse(KeithNumber.isKeith(12));
assertFalse(KeithNumber.isKeith(13));
assertFalse(KeithNumber.isKeith(15));
assertFalse(KeithNumber.isKeith(20));
assertFalse(KeithNumber.isKeith(30));
assertFalse(KeithNumber.isKeith(50));
}
/**
* Tests three-digit non-Keith numbers.
*/
@Test
void testThreeDigitNonKeithNumbers() {
assertFalse(KeithNumber.isKeith(100));
assertFalse(KeithNumber.isKeith(123));
assertFalse(KeithNumber.isKeith(196));
assertFalse(KeithNumber.isKeith(198));
assertFalse(KeithNumber.isKeith(456));
assertFalse(KeithNumber.isKeith(741));
assertFalse(KeithNumber.isKeith(743));
assertFalse(KeithNumber.isKeith(999));
}
/**
* Tests validation for edge case 14 in detail.
* 14 is a Keith number: 1, 4, 5 (1+4), 9 (4+5), 14 (5+9).
*/
@Test
void testKeithNumber14() {
assertTrue(KeithNumber.isKeith(14));
}
/**
* Tests validation for edge case 197 in detail.
* 197 is a Keith number: 1, 9, 7, 17, 33, 57, 107, 197.
*/
@Test
void testKeithNumber197() {
assertTrue(KeithNumber.isKeith(197));
}
/**
* Tests that zero throws an IllegalArgumentException.
*/
@Test
void testZeroThrowsException() {
assertThrows(IllegalArgumentException.class, () -> KeithNumber.isKeith(0));
}
/**
* Tests that negative numbers throw an IllegalArgumentException.
*/
@Test
void testNegativeNumbersThrowException() {
assertThrows(IllegalArgumentException.class, () -> KeithNumber.isKeith(-1));
assertThrows(IllegalArgumentException.class, () -> KeithNumber.isKeith(-14));
assertThrows(IllegalArgumentException.class, () -> KeithNumber.isKeith(-100));
}
/**
* Tests various edge cases with larger numbers.
*/
@Test
void testLargerNumbers() {
assertTrue(KeithNumber.isKeith(2208));
assertFalse(KeithNumber.isKeith(2207));
assertFalse(KeithNumber.isKeith(2209));
}
/**
* Tests the expected behavior with all two-digit Keith numbers.
*/
@Test
void testAllKnownTwoDigitKeithNumbers() {
int[] knownKeithNumbers = {14, 19, 28, 47, 61, 75};
for (int number : knownKeithNumbers) {
assertTrue(KeithNumber.isKeith(number), "Expected " + number + " to be a Keith number");
}
}
}