Add DFS with parent-completion constraint for DAG traversal (#6467)

* Add DFS with parent-completion constraint for DAG traversal

* warning in PartitionProblem.java affecting tests

* added clang-format and updated javadoc

* optimized imports and rechecked camelCase format in tests

* removed .* import and made small visual change

* replaced a inline return with correct {} block

* Removed changed in PartitionProblem.java, Renamed class name to be straightforward about the implementation.Added full names instead of shortcuts, and included record.

* updated for clang format

---------

Co-authored-by: Deniz Altunkapan <93663085+DenizAltunkapan@users.noreply.github.com>
This commit is contained in:
Stathis Veinoglou
2025-08-15 19:41:52 +03:00
committed by GitHub
parent 16345cba6d
commit 2dd6a13707
2 changed files with 253 additions and 0 deletions

View File

@@ -0,0 +1,163 @@
package com.thealgorithms.graph;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Set;
/**
* DFS that visits a successor only when all its predecessors are already visited,
* emitting VISIT and SKIP events.
* <p>
* This class includes a DFS variant that visits a successor only when all of its
* predecessors have already been visited
* </p>
* <p>Related reading:
* <ul>
* <li><a href="https://en.wikipedia.org/wiki/Topological_sorting">Topological sorting</a></li>
* <li><a href="https://en.wikipedia.org/wiki/Depth-first_search">Depth-first search</a></li>
* </ul>
* </p>
*/
public final class PredecessorConstrainedDfs {
private PredecessorConstrainedDfs() {
// utility class
}
/** An event emitted by the traversal: either a VISIT with an order, or a SKIP with a note. */
public record TraversalEvent<T>(T node,
Integer order, // non-null for visit, null for skip
String note // non-null for skip, null for visit
) {
public TraversalEvent {
Objects.requireNonNull(node);
// order and note can be null based on event type
}
/** A visit event with an increasing order (0,1,2,...) */
public static <T> TraversalEvent<T> visit(T node, int order) {
return new TraversalEvent<>(node, order, null);
}
/** A skip event with an explanatory note (e.g., not all parents visited yet). */
public static <T> TraversalEvent<T> skip(T node, String note) {
return new TraversalEvent<>(node, null, Objects.requireNonNull(note));
}
public boolean isVisit() {
return order != null;
}
public boolean isSkip() {
return order == null;
}
@Override
public String toString() {
return isVisit() ? "VISIT(" + node + ", order=" + order + ")" : "SKIP(" + node + ", " + note + ")";
}
}
/**
* DFS (recursive) that records the order of first visit starting at {@code start},
* but only recurses to a child when <b>all</b> its predecessors have been visited.
* If a child is encountered early (some parent unvisited), a SKIP event is recorded.
*
* <p>Equivalent idea to the Python pseudo in the user's description (with successors and predecessors),
* but implemented in Java and returning a sequence of {@link TraversalEvent}s.</p>
*
* @param successors adjacency list: for each node, its outgoing neighbors
* @param start start node
* @return immutable list of traversal events (VISITs with monotonically increasing order and SKIPs with messages)
* @throws IllegalArgumentException if {@code successors} is null
*/
public static <T> List<TraversalEvent<T>> dfsRecursiveOrder(Map<T, List<T>> successors, T start) {
if (successors == null) {
throw new IllegalArgumentException("successors must not be null");
}
// derive predecessors once
Map<T, List<T>> predecessors = derivePredecessors(successors);
return dfsRecursiveOrder(successors, predecessors, start);
}
/**
* Same as {@link #dfsRecursiveOrder(Map, Object)} but with an explicit predecessors map.
*/
public static <T> List<TraversalEvent<T>> dfsRecursiveOrder(Map<T, List<T>> successors, Map<T, List<T>> predecessors, T start) {
if (successors == null || predecessors == null) {
throw new IllegalArgumentException("successors and predecessors must not be null");
}
if (start == null) {
return List.of();
}
if (!successors.containsKey(start) && !appearsAnywhere(successors, start)) {
return List.of(); // start not present in graph
}
List<TraversalEvent<T>> events = new ArrayList<>();
Set<T> visited = new HashSet<>();
int[] order = {0};
dfs(start, successors, predecessors, visited, order, events);
return Collections.unmodifiableList(events);
}
private static <T> void dfs(T currentNode, Map<T, List<T>> successors, Map<T, List<T>> predecessors, Set<T> visited, int[] order, List<TraversalEvent<T>> result) {
if (!visited.add(currentNode)) {
return; // already visited
}
result.add(TraversalEvent.visit(currentNode, order[0]++)); // record visit and increment
for (T childNode : successors.getOrDefault(currentNode, List.of())) {
if (visited.contains(childNode)) {
continue;
}
if (allParentsVisited(childNode, visited, predecessors)) {
dfs(childNode, successors, predecessors, visited, order, result);
} else {
result.add(TraversalEvent.skip(childNode, "⛔ Skipping " + childNode + ": not all parents are visited yet."));
// do not mark visited; it may be visited later from another parent
}
}
}
private static <T> boolean allParentsVisited(T node, Set<T> visited, Map<T, List<T>> predecessors) {
for (T parent : predecessors.getOrDefault(node, List.of())) {
if (!visited.contains(parent)) {
return false;
}
}
return true;
}
private static <T> boolean appearsAnywhere(Map<T, List<T>> successors, T node) {
if (successors.containsKey(node)) {
return true;
}
for (List<T> neighbours : successors.values()) {
if (neighbours != null && neighbours.contains(node)) {
return true;
}
}
return false;
}
private static <T> Map<T, List<T>> derivePredecessors(Map<T, List<T>> successors) {
Map<T, List<T>> predecessors = new HashMap<>();
// ensure keys exist for all nodes appearing anywhere
for (Map.Entry<T, List<T>> entry : successors.entrySet()) {
predecessors.computeIfAbsent(entry.getKey(), key -> new ArrayList<>());
for (T childNode : entry.getValue()) {
predecessors.computeIfAbsent(childNode, key -> new ArrayList<>()).add(entry.getKey());
}
}
return predecessors;
}
}

View File

@@ -0,0 +1,90 @@
package com.thealgorithms.graph;
import static org.assertj.core.api.Assertions.assertThat;
import static org.junit.jupiter.api.Assertions.assertThrows;
import com.thealgorithms.graph.PredecessorConstrainedDfs.TraversalEvent;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import org.junit.jupiter.api.Test;
class PredecessorConstrainedDfsTest {
// A -> B, A -> C, B -> D, C -> D (classic diamond)
private static Map<String, List<String>> diamond() {
Map<String, List<String>> g = new LinkedHashMap<>();
g.put("A", List.of("B", "C"));
g.put("B", List.of("D"));
g.put("C", List.of("D"));
g.put("D", List.of());
return g;
}
@Test
void dfsRecursiveOrderEmitsSkipUntilAllParentsVisited() {
List<TraversalEvent<String>> events = PredecessorConstrainedDfs.dfsRecursiveOrder(diamond(), "A");
// Expect visits in order and a skip for first time we meet D (via B) before C is visited.
var visits = events.stream().filter(TraversalEvent::isVisit).toList();
var skips = events.stream().filter(TraversalEvent::isSkip).toList();
// Visits should be A(0), B(1), C(2), D(3) in some deterministic order given adjacency
assertThat(visits).hasSize(4);
assertThat(visits.get(0).node()).isEqualTo("A");
assertThat(visits.get(0).order()).isEqualTo(0);
assertThat(visits.get(1).node()).isEqualTo("B");
assertThat(visits.get(1).order()).isEqualTo(1);
assertThat(visits.get(2).node()).isEqualTo("C");
assertThat(visits.get(2).order()).isEqualTo(2);
assertThat(visits.get(3).node()).isEqualTo("D");
assertThat(visits.get(3).order()).isEqualTo(3);
// One skip when we first encountered D from B (before C was visited)
assertThat(skips).hasSize(1);
assertThat(skips.get(0).node()).isEqualTo("D");
assertThat(skips.get(0).note()).contains("not all parents");
}
@Test
void returnsEmptyWhenStartNotInGraph() {
Map<Integer, List<Integer>> graph = Map.of(1, List.of(2), 2, List.of(1));
assertThat(PredecessorConstrainedDfs.dfsRecursiveOrder(graph, 99)).isEmpty();
}
@Test
void nullSuccessorsThrows() {
assertThrows(IllegalArgumentException.class, () -> PredecessorConstrainedDfs.dfsRecursiveOrder(null, "A"));
}
@Test
void worksWithExplicitPredecessors() {
Map<Integer, List<Integer>> successors = new HashMap<>();
successors.put(10, List.of(20));
successors.put(20, List.of(30));
successors.put(30, List.of());
Map<Integer, List<Integer>> predecessors = new HashMap<>();
predecessors.put(10, List.of());
predecessors.put(20, List.of(10));
predecessors.put(30, List.of(20));
var events = PredecessorConstrainedDfs.dfsRecursiveOrder(successors, predecessors, 10);
var visitNodes = events.stream().filter(TraversalEvent::isVisit).map(TraversalEvent::node).toList();
assertThat(visitNodes).containsExactly(10, 20, 30);
}
@Test
void cycleProducesSkipsButNoInfiniteRecursion() {
Map<String, List<String>> successors = new LinkedHashMap<>();
successors.put("X", List.of("Y"));
successors.put("Y", List.of("X")); // 2-cycle
var events = PredecessorConstrainedDfs.dfsRecursiveOrder(successors, "X");
// Only X is visited; encountering Y from X causes skip because Y's parent X is visited,
// but when recursing to Y we'd hit back to X (already visited) and stop; no infinite loop.
assertThat(events.stream().anyMatch(TraversalEvent::isVisit)).isTrue();
assertThat(events.stream().filter(TraversalEvent::isVisit).map(TraversalEvent::node)).contains("X");
}
}