ExtendedEuclideanAlgorithm (#7172)

* commit1

* Fix clang-format spacing in array declarations
This commit is contained in:
Rajuri Likhitha
2025-12-18 02:44:12 +05:30
committed by GitHub
parent 4f293b33e5
commit 2911a7b52c
2 changed files with 95 additions and 0 deletions

View File

@@ -0,0 +1,48 @@
package com.thealgorithms.maths;
/**
* In mathematics, the extended Euclidean algorithm is an extension to the
* Euclidean algorithm, and computes, in addition to the greatest common divisor
* (gcd) of integers a and b, also the coefficients of Bézout's identity, which
* are integers x and y such that ax + by = gcd(a, b).
*
* <p>
* For more details, see
* https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
*/
public final class ExtendedEuclideanAlgorithm {
private ExtendedEuclideanAlgorithm() {
}
/**
* This method implements the extended Euclidean algorithm.
*
* @param a The first number.
* @param b The second number.
* @return An array of three integers:
* <ul>
* <li>Index 0: The greatest common divisor (gcd) of a and b.</li>
* <li>Index 1: The value of x in the equation ax + by = gcd(a, b).</li>
* <li>Index 2: The value of y in the equation ax + by = gcd(a, b).</li>
* </ul>
*/
public static long[] extendedGCD(long a, long b) {
if (b == 0) {
// Base case: gcd(a, 0) = a. The equation is a*1 + 0*0 = a.
return new long[] {a, 1, 0};
}
// Recursive call
long[] result = extendedGCD(b, a % b);
long gcd = result[0];
long x1 = result[1];
long y1 = result[2];
// Update coefficients using the results from the recursive call
long x = y1;
long y = x1 - a / b * y1;
return new long[] {gcd, x, y};
}
}

View File

@@ -0,0 +1,47 @@
package com.thealgorithms.maths;
import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;
public class ExtendedEuclideanAlgorithmTest {
/**
* Verifies that the returned values satisfy Bézout's identity: a*x + b*y =
* gcd(a, b)
*/
private void verifyBezoutIdentity(long a, long b, long[] result) {
long gcd = result[0];
long x = result[1];
long y = result[2];
assertEquals(a * x + b * y, gcd, "Bézout's identity failed for gcd(" + a + ", " + b + ")");
}
@Test
public void testExtendedGCD() {
// Test case 1: General case gcd(30, 50) = 10
long[] result1 = ExtendedEuclideanAlgorithm.extendedGCD(30, 50);
assertEquals(10, result1[0], "Test Case 1 Failed: gcd(30, 50) should be 10");
verifyBezoutIdentity(30, 50, result1);
// Test case 2: Another general case gcd(240, 46) = 2
long[] result2 = ExtendedEuclideanAlgorithm.extendedGCD(240, 46);
assertEquals(2, result2[0], "Test Case 2 Failed: gcd(240, 46) should be 2");
verifyBezoutIdentity(240, 46, result2);
// Test case 3: Base case where b is 0, gcd(10, 0) = 10
long[] result3 = ExtendedEuclideanAlgorithm.extendedGCD(10, 0);
assertEquals(10, result3[0], "Test Case 3 Failed: gcd(10, 0) should be 10");
verifyBezoutIdentity(10, 0, result3);
// Test case 4: Numbers are co-prime gcd(17, 13) = 1
long[] result4 = ExtendedEuclideanAlgorithm.extendedGCD(17, 13);
assertEquals(1, result4[0], "Test Case 4 Failed: gcd(17, 13) should be 1");
verifyBezoutIdentity(17, 13, result4);
// Test case 5: One number is a multiple of the other gcd(100, 20) = 20
long[] result5 = ExtendedEuclideanAlgorithm.extendedGCD(100, 20);
assertEquals(20, result5[0], "Test Case 5 Failed: gcd(100, 20) should be 20");
verifyBezoutIdentity(100, 20, result5);
}
}