mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
ExtendedEuclideanAlgorithm (#7172)
* commit1 * Fix clang-format spacing in array declarations
This commit is contained in:
@@ -0,0 +1,48 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
/**
|
||||
* In mathematics, the extended Euclidean algorithm is an extension to the
|
||||
* Euclidean algorithm, and computes, in addition to the greatest common divisor
|
||||
* (gcd) of integers a and b, also the coefficients of Bézout's identity, which
|
||||
* are integers x and y such that ax + by = gcd(a, b).
|
||||
*
|
||||
* <p>
|
||||
* For more details, see
|
||||
* https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
|
||||
*/
|
||||
public final class ExtendedEuclideanAlgorithm {
|
||||
|
||||
private ExtendedEuclideanAlgorithm() {
|
||||
}
|
||||
|
||||
/**
|
||||
* This method implements the extended Euclidean algorithm.
|
||||
*
|
||||
* @param a The first number.
|
||||
* @param b The second number.
|
||||
* @return An array of three integers:
|
||||
* <ul>
|
||||
* <li>Index 0: The greatest common divisor (gcd) of a and b.</li>
|
||||
* <li>Index 1: The value of x in the equation ax + by = gcd(a, b).</li>
|
||||
* <li>Index 2: The value of y in the equation ax + by = gcd(a, b).</li>
|
||||
* </ul>
|
||||
*/
|
||||
public static long[] extendedGCD(long a, long b) {
|
||||
if (b == 0) {
|
||||
// Base case: gcd(a, 0) = a. The equation is a*1 + 0*0 = a.
|
||||
return new long[] {a, 1, 0};
|
||||
}
|
||||
|
||||
// Recursive call
|
||||
long[] result = extendedGCD(b, a % b);
|
||||
long gcd = result[0];
|
||||
long x1 = result[1];
|
||||
long y1 = result[2];
|
||||
|
||||
// Update coefficients using the results from the recursive call
|
||||
long x = y1;
|
||||
long y = x1 - a / b * y1;
|
||||
|
||||
return new long[] {gcd, x, y};
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,47 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
public class ExtendedEuclideanAlgorithmTest {
|
||||
|
||||
/**
|
||||
* Verifies that the returned values satisfy Bézout's identity: a*x + b*y =
|
||||
* gcd(a, b)
|
||||
*/
|
||||
private void verifyBezoutIdentity(long a, long b, long[] result) {
|
||||
long gcd = result[0];
|
||||
long x = result[1];
|
||||
long y = result[2];
|
||||
assertEquals(a * x + b * y, gcd, "Bézout's identity failed for gcd(" + a + ", " + b + ")");
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testExtendedGCD() {
|
||||
// Test case 1: General case gcd(30, 50) = 10
|
||||
long[] result1 = ExtendedEuclideanAlgorithm.extendedGCD(30, 50);
|
||||
assertEquals(10, result1[0], "Test Case 1 Failed: gcd(30, 50) should be 10");
|
||||
verifyBezoutIdentity(30, 50, result1);
|
||||
|
||||
// Test case 2: Another general case gcd(240, 46) = 2
|
||||
long[] result2 = ExtendedEuclideanAlgorithm.extendedGCD(240, 46);
|
||||
assertEquals(2, result2[0], "Test Case 2 Failed: gcd(240, 46) should be 2");
|
||||
verifyBezoutIdentity(240, 46, result2);
|
||||
|
||||
// Test case 3: Base case where b is 0, gcd(10, 0) = 10
|
||||
long[] result3 = ExtendedEuclideanAlgorithm.extendedGCD(10, 0);
|
||||
assertEquals(10, result3[0], "Test Case 3 Failed: gcd(10, 0) should be 10");
|
||||
verifyBezoutIdentity(10, 0, result3);
|
||||
|
||||
// Test case 4: Numbers are co-prime gcd(17, 13) = 1
|
||||
long[] result4 = ExtendedEuclideanAlgorithm.extendedGCD(17, 13);
|
||||
assertEquals(1, result4[0], "Test Case 4 Failed: gcd(17, 13) should be 1");
|
||||
verifyBezoutIdentity(17, 13, result4);
|
||||
|
||||
// Test case 5: One number is a multiple of the other gcd(100, 20) = 20
|
||||
long[] result5 = ExtendedEuclideanAlgorithm.extendedGCD(100, 20);
|
||||
assertEquals(20, result5[0], "Test Case 5 Failed: gcd(100, 20) should be 20");
|
||||
verifyBezoutIdentity(100, 20, result5);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user