mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-05 08:17:33 +08:00
Enhance docs, add more tests in JohnsonsAlgorithm
(#5964)
This commit is contained in:
@ -21,17 +21,18 @@ import java.util.List;
|
||||
*/
|
||||
public final class JohnsonsAlgorithm {
|
||||
|
||||
// Constant representing infinity
|
||||
private static final double INF = Double.POSITIVE_INFINITY;
|
||||
|
||||
/**
|
||||
* A private constructor to hide the implicit public one.
|
||||
*/
|
||||
private JohnsonsAlgorithm() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Executes Johnson's algorithm on the given graph.
|
||||
* Steps:
|
||||
* 1. Add a new vertex to the graph and run Bellman-Ford to compute modified weights
|
||||
* 2. t the graph using the modified weights
|
||||
* 3. Run Dijkstra's algorithm for each vertex to compute the shortest paths
|
||||
* The final result is a 2D array of shortest distances between all pairs of vertices.
|
||||
*
|
||||
* @param graph The input graph represented as an adjacency matrix.
|
||||
* @return A 2D array representing the shortest distances between all pairs of vertices.
|
||||
@ -40,13 +41,10 @@ public final class JohnsonsAlgorithm {
|
||||
int numVertices = graph.length;
|
||||
double[][] edges = convertToEdgeList(graph);
|
||||
|
||||
// Step 1: Add a new vertex and run Bellman-Ford
|
||||
double[] modifiedWeights = bellmanFord(edges, numVertices);
|
||||
|
||||
// Step 2: Reweight the graph
|
||||
double[][] reweightedGraph = reweightGraph(graph, modifiedWeights);
|
||||
|
||||
// Step 3: Run Dijkstra's algorithm for each vertex
|
||||
double[][] shortestDistances = new double[numVertices][numVertices];
|
||||
for (int source = 0; source < numVertices; source++) {
|
||||
shortestDistances[source] = dijkstra(reweightedGraph, source, modifiedWeights);
|
||||
@ -74,7 +72,6 @@ public final class JohnsonsAlgorithm {
|
||||
}
|
||||
}
|
||||
|
||||
// Convert the List to a 2D array
|
||||
return edgeList.toArray(new double[0][]);
|
||||
}
|
||||
|
||||
@ -89,7 +86,7 @@ public final class JohnsonsAlgorithm {
|
||||
private static double[] bellmanFord(double[][] edges, int numVertices) {
|
||||
double[] dist = new double[numVertices + 1];
|
||||
Arrays.fill(dist, INF);
|
||||
dist[numVertices] = 0; // Distance to the new source vertex is 0
|
||||
dist[numVertices] = 0;
|
||||
|
||||
// Add edges from the new vertex to all original vertices
|
||||
double[][] allEdges = Arrays.copyOf(edges, edges.length + numVertices);
|
||||
|
@ -23,114 +23,120 @@ class JohnsonsAlgorithmTest {
|
||||
*/
|
||||
@Test
|
||||
void testSimpleGraph() {
|
||||
// Test case for a simple graph without negative edges
|
||||
double[][] graph = {{0, 4, INF, INF}, {INF, 0, 1, INF}, {INF, INF, 0, 2}, {INF, INF, INF, 0}};
|
||||
|
||||
double[][] result = JohnsonsAlgorithm.johnsonAlgorithm(graph);
|
||||
|
||||
double[][] expected = {{0, 4, 5, 7}, {INF, 0, 1, 3}, {INF, INF, 0, 2}, {INF, INF, INF, 0}};
|
||||
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Johnson's Algorithm on a graph with negative edges but no
|
||||
* negative weight cycles. Verifies the algorithm handles negative
|
||||
* edge weights correctly.
|
||||
* Tests Johnson's Algorithm on a graph with negative edges but no negative weight cycles.
|
||||
*/
|
||||
@Test
|
||||
void testGraphWithNegativeEdges() {
|
||||
// Graph with negative edges but no negative weight cycles
|
||||
double[][] graph = {{0, -1, 4}, {INF, 0, 3}, {INF, INF, 0}};
|
||||
|
||||
double[][] result = JohnsonsAlgorithm.johnsonAlgorithm(graph);
|
||||
|
||||
double[][] expected = {{0, INF, 4}, {INF, 0, 3}, {INF, INF, 0}};
|
||||
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the behavior of Johnson's Algorithm on a graph with a negative
|
||||
* weight cycle. Expects an IllegalArgumentException to be thrown
|
||||
* due to the presence of the cycle.
|
||||
* Tests Johnson's Algorithm on a graph with a negative weight cycle.
|
||||
*/
|
||||
@Test
|
||||
void testNegativeWeightCycle() {
|
||||
// Graph with a negative weight cycle
|
||||
double[][] graph = {{0, 1, INF}, {INF, 0, -1}, {-1, INF, 0}};
|
||||
|
||||
// Johnson's algorithm should throw an exception when a negative cycle is detected
|
||||
assertThrows(IllegalArgumentException.class, () -> { JohnsonsAlgorithm.johnsonAlgorithm(graph); });
|
||||
assertThrows(IllegalArgumentException.class, () -> JohnsonsAlgorithm.johnsonAlgorithm(graph));
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Dijkstra's algorithm as a part of Johnson's algorithm implementation
|
||||
* on a small graph. Verifies that the shortest path is correctly calculated.
|
||||
* Tests Dijkstra's algorithm on a small graph as part of Johnson's Algorithm.
|
||||
*/
|
||||
@Test
|
||||
void testDijkstra() {
|
||||
// Testing Dijkstra's algorithm with a small graph
|
||||
double[][] graph = {{0, 1, 2}, {INF, 0, 3}, {INF, INF, 0}};
|
||||
|
||||
double[] modifiedWeights = {0, 0, 0}; // No reweighting in this simple case
|
||||
|
||||
double[] modifiedWeights = {0, 0, 0};
|
||||
double[] result = JohnsonsAlgorithm.dijkstra(graph, 0, modifiedWeights);
|
||||
double[] expected = {0, 1, 2};
|
||||
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the conversion of an adjacency matrix to an edge list.
|
||||
* Verifies that the conversion process generates the correct edge list.
|
||||
*/
|
||||
@Test
|
||||
void testEdgeListConversion() {
|
||||
// Test the conversion of adjacency matrix to edge list
|
||||
double[][] graph = {{0, 5, INF}, {INF, 0, 2}, {INF, INF, 0}};
|
||||
|
||||
// Running convertToEdgeList
|
||||
double[][] edges = JohnsonsAlgorithm.convertToEdgeList(graph);
|
||||
|
||||
// Expected edge list: (0 -> 1, weight 5), (1 -> 2, weight 2)
|
||||
double[][] expected = {{0, 1, 5}, {1, 2, 2}};
|
||||
|
||||
// Verify the edge list matches the expected values
|
||||
assertArrayEquals(expected, edges);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the reweighting of a graph as a part of Johnson's Algorithm.
|
||||
* Verifies that the reweighted graph produces correct results.
|
||||
* Tests the reweighting of a graph.
|
||||
*/
|
||||
@Test
|
||||
void testReweightGraph() {
|
||||
// Test reweighting of the graph
|
||||
double[][] graph = {{0, 2, 9}, {INF, 0, 1}, {INF, INF, 0}};
|
||||
double[] modifiedWeights = {1, 2, 3}; // Arbitrary weight function
|
||||
|
||||
double[] modifiedWeights = {1, 2, 3};
|
||||
double[][] reweightedGraph = JohnsonsAlgorithm.reweightGraph(graph, modifiedWeights);
|
||||
|
||||
// Expected reweighted graph:
|
||||
double[][] expected = {{0, 1, 7}, {INF, 0, 0}, {INF, INF, 0}};
|
||||
|
||||
assertArrayEquals(expected, reweightedGraph);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the minDistance method used in Dijkstra's algorithm to find
|
||||
* the vertex with the minimum distance that has not yet been visited.
|
||||
* Tests the minDistance method used in Dijkstra's algorithm.
|
||||
*/
|
||||
@Test
|
||||
void testMinDistance() {
|
||||
// Test minDistance method
|
||||
double[] dist = {INF, 3, 1, INF};
|
||||
boolean[] visited = {false, false, false, false};
|
||||
|
||||
int minIndex = JohnsonsAlgorithm.minDistance(dist, visited);
|
||||
|
||||
// The vertex with minimum distance is vertex 2 with a distance of 1
|
||||
assertEquals(2, minIndex);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Johnson's Algorithm on a graph where all vertices are disconnected.
|
||||
*/
|
||||
@Test
|
||||
void testDisconnectedGraph() {
|
||||
double[][] graph = {{0, INF, INF}, {INF, 0, INF}, {INF, INF, 0}};
|
||||
double[][] result = JohnsonsAlgorithm.johnsonAlgorithm(graph);
|
||||
double[][] expected = {{0, INF, INF}, {INF, 0, INF}, {INF, INF, 0}};
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Johnson's Algorithm on a fully connected graph.
|
||||
*/
|
||||
@Test
|
||||
void testFullyConnectedGraph() {
|
||||
double[][] graph = {{0, 1, 2}, {1, 0, 1}, {2, 1, 0}};
|
||||
double[][] result = JohnsonsAlgorithm.johnsonAlgorithm(graph);
|
||||
double[][] expected = {{0, 1, 2}, {1, 0, 1}, {2, 1, 0}};
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Dijkstra's algorithm on a graph with multiple shortest paths.
|
||||
*/
|
||||
@Test
|
||||
void testDijkstraMultipleShortestPaths() {
|
||||
double[][] graph = {{0, 1, 2, INF}, {INF, 0, INF, 1}, {INF, INF, 0, 1}, {INF, INF, INF, 0}};
|
||||
double[] modifiedWeights = {0, 0, 0, 0};
|
||||
double[] result = JohnsonsAlgorithm.dijkstra(graph, 0, modifiedWeights);
|
||||
double[] expected = {0, 1, 2, 2};
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Johnson's Algorithm with a graph where all edge weights are zero.
|
||||
*/
|
||||
@Test
|
||||
void testGraphWithZeroWeights() {
|
||||
double[][] graph = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||
double[][] result = JohnsonsAlgorithm.johnsonAlgorithm(graph);
|
||||
double[][] expected = {{0, INF, INF}, {INF, 0, INF}, {INF, INF, 0}};
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user