Added LU Decomposition Algorithm for matrix (#6834)

* Added LU decomposition algorthm

* Added LU decomposition algorthim

* Added LU decomposition algorthim

* Added LU decomposition algorthim

* Added LU decomposition algorthim

* Added LU decomposition algorthim

* Added LU decomposition algorthim

* Added LU decomposition algorthim

* Added LU decomposition algorthim
This commit is contained in:
Sourav Pati
2025-11-04 02:59:44 +05:30
committed by GitHub
parent 82ff14c36e
commit 100462d8e9
2 changed files with 128 additions and 0 deletions

View File

@@ -0,0 +1,88 @@
package com.thealgorithms.matrix;
/**
* LU Decomposition algorithm
* --------------------------
* Decomposes a square matrix a into a product of two matrices:
* a = l * u
* where:
* - l is a lower triangular matrix with 1s on its diagonal
* - u is an upper triangular matrix
*
* Reference:
* https://en.wikipedia.org/wiki/lu_decomposition
*/
public final class LUDecomposition {
private LUDecomposition() {
}
/**
* A helper class to store both l and u matrices
*/
public static class LU {
double[][] l;
double[][] u;
LU(double[][] l, double[][] u) {
this.l = l;
this.u = u;
}
}
/**
* Performs LU Decomposition on a square matrix a
*
* @param a input square matrix
* @return LU object containing l and u matrices
*/
public static LU decompose(double[][] a) {
int n = a.length;
double[][] l = new double[n][n];
double[][] u = new double[n][n];
for (int i = 0; i < n; i++) {
// upper triangular matrix
for (int k = i; k < n; k++) {
double sum = 0;
for (int j = 0; j < i; j++) {
sum += l[i][j] * u[j][k];
}
u[i][k] = a[i][k] - sum;
}
// lower triangular matrix
for (int k = i; k < n; k++) {
if (i == k) {
l[i][i] = 1; // diagonal as 1
} else {
double sum = 0;
for (int j = 0; j < i; j++) {
sum += l[k][j] * u[j][i];
}
l[k][i] = (a[k][i] - sum) / u[i][i];
}
}
}
return new LU(l, u);
}
/**
* Utility function to print a matrix
*
* @param m matrix to print
*/
public static void printMatrix(double[][] m) {
for (double[] row : m) {
System.out.print("[");
for (int j = 0; j < row.length; j++) {
System.out.printf("%7.3f", row[j]);
if (j < row.length - 1) {
System.out.print(", ");
}
}
System.out.println("]");
}
}
}

View File

@@ -0,0 +1,40 @@
package com.thealgorithms.matrix;
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
import org.junit.jupiter.api.Test;
public class LUDecompositionTest {
@Test
public void testLUDecomposition() {
double[][] a = {{4, 3}, {6, 3}};
// Perform LU decomposition
LUDecomposition.LU lu = LUDecomposition.decompose(a);
double[][] l = lu.l;
double[][] u = lu.u;
// Reconstruct a from l and u
double[][] reconstructed = multiplyMatrices(l, u);
// Assert that reconstructed matrix matches original a
for (int i = 0; i < a.length; i++) {
assertArrayEquals(a[i], reconstructed[i], 1e-9);
}
}
// Helper method to multiply two matrices
private double[][] multiplyMatrices(double[][] a, double[][] b) {
int n = a.length;
double[][] c = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
}
}