mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-07 09:45:04 +08:00
Add tests, remove main
method, improve docs in BruteForceKnapsack (#5641)
This commit is contained in:
@ -783,6 +783,7 @@
|
||||
* [StrassenMatrixMultiplicationTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/divideandconquer/StrassenMatrixMultiplicationTest.java)
|
||||
* dynamicprogramming
|
||||
* [BoardPathTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/dynamicprogramming/BoardPathTest.java)
|
||||
* [BruteForceKnapsackTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/dynamicprogramming/BruteForceKnapsackTest.java)
|
||||
* [CatalanNumberTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/dynamicprogramming/CatalanNumberTest.java)
|
||||
* [ClimbStairsTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/dynamicprogramming/ClimbStairsTest.java)
|
||||
* [CountFriendsPairingTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/dynamicprogramming/CountFriendsPairingTest.java)
|
||||
|
@ -1,39 +1,67 @@
|
||||
package com.thealgorithms.dynamicprogramming;
|
||||
|
||||
/* A Naive recursive implementation
|
||||
of 0-1 Knapsack problem */
|
||||
/**
|
||||
* A naive recursive implementation of the 0-1 Knapsack problem.
|
||||
*
|
||||
* <p>The 0-1 Knapsack problem is a classic optimization problem where you are
|
||||
* given a set of items, each with a weight and a value, and a knapsack with a
|
||||
* fixed capacity. The goal is to determine the maximum value that can be
|
||||
* obtained by selecting a subset of the items such that the total weight does
|
||||
* not exceed the knapsack's capacity. Each item can either be included (1) or
|
||||
* excluded (0), hence the name "0-1" Knapsack.</p>
|
||||
*
|
||||
* <p>This class provides a brute-force recursive approach to solving the
|
||||
* problem. It evaluates all possible combinations of items to find the optimal
|
||||
* solution, but this approach has exponential time complexity and is not
|
||||
* suitable for large input sizes.</p>
|
||||
*
|
||||
* <p><b>Time Complexity:</b> O(2^n), where n is the number of items.</p>
|
||||
*
|
||||
* <p><b>Space Complexity:</b> O(n), due to the recursive function call stack.</p>
|
||||
*/
|
||||
public final class BruteForceKnapsack {
|
||||
private BruteForceKnapsack() {
|
||||
}
|
||||
// Returns the maximum value that
|
||||
// can be put in a knapsack of
|
||||
// capacity W
|
||||
|
||||
/**
|
||||
* Solves the 0-1 Knapsack problem using a recursive brute-force approach.
|
||||
*
|
||||
* @param w the total capacity of the knapsack
|
||||
* @param wt an array where wt[i] represents the weight of the i-th item
|
||||
* @param val an array where val[i] represents the value of the i-th item
|
||||
* @param n the number of items available for selection
|
||||
* @return the maximum value that can be obtained with the given capacity
|
||||
*
|
||||
* <p>The function uses recursion to explore all possible subsets of items.
|
||||
* For each item, it has two choices: either include it in the knapsack
|
||||
* (if it fits) or exclude it. It returns the maximum value obtainable
|
||||
* through these two choices.</p>
|
||||
*
|
||||
* <p><b>Base Cases:</b>
|
||||
* <ul>
|
||||
* <li>If no items are left (n == 0), the maximum value is 0.</li>
|
||||
* <li>If the knapsack's remaining capacity is 0 (w == 0), no more items can
|
||||
* be included, and the value is 0.</li>
|
||||
* </ul></p>
|
||||
*
|
||||
* <p><b>Recursive Steps:</b>
|
||||
* <ul>
|
||||
* <li>If the weight of the n-th item exceeds the current capacity, it is
|
||||
* excluded from the solution, and the function proceeds with the remaining
|
||||
* items.</li>
|
||||
* <li>Otherwise, the function considers two possibilities: include the n-th
|
||||
* item or exclude it, and returns the maximum value of these two scenarios.</li>
|
||||
* </ul></p>
|
||||
*/
|
||||
static int knapSack(int w, int[] wt, int[] val, int n) {
|
||||
// Base Case
|
||||
if (n == 0 || w == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// If weight of the nth item is
|
||||
// more than Knapsack capacity W,
|
||||
// then this item cannot be included
|
||||
// in the optimal solution
|
||||
if (wt[n - 1] > w) {
|
||||
return knapSack(w, wt, val, n - 1);
|
||||
} // Return the maximum of two cases:
|
||||
// (1) nth item included
|
||||
// (2) not included
|
||||
else {
|
||||
return Math.max(val[n - 1] + knapSack(w - wt[n - 1], wt, val, n - 1), knapSack(w, wt, val, n - 1));
|
||||
} else {
|
||||
return Math.max(knapSack(w, wt, val, n - 1), val[n - 1] + knapSack(w - wt[n - 1], wt, val, n - 1));
|
||||
}
|
||||
}
|
||||
|
||||
// Driver code
|
||||
public static void main(String[] args) {
|
||||
int[] val = new int[] {60, 100, 120};
|
||||
int[] wt = new int[] {10, 20, 30};
|
||||
int w = 50;
|
||||
int n = val.length;
|
||||
System.out.println(knapSack(w, wt, val, n));
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,96 @@
|
||||
package com.thealgorithms.dynamicprogramming;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
public class BruteForceKnapsackTest {
|
||||
|
||||
@Test
|
||||
void testKnapSackBasicCase() {
|
||||
int[] val = {60, 100, 120};
|
||||
int[] wt = {10, 20, 30};
|
||||
int w = 50;
|
||||
int n = val.length;
|
||||
|
||||
// The expected result for this case is 220 (items 2 and 3 are included)
|
||||
assertEquals(220, BruteForceKnapsack.knapSack(w, wt, val, n));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testKnapSackNoItems() {
|
||||
int[] val = {};
|
||||
int[] wt = {};
|
||||
int w = 50;
|
||||
int n = val.length;
|
||||
|
||||
// With no items, the maximum value should be 0
|
||||
assertEquals(0, BruteForceKnapsack.knapSack(w, wt, val, n));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testKnapSackZeroCapacity() {
|
||||
int[] val = {60, 100, 120};
|
||||
int[] wt = {10, 20, 30};
|
||||
int w = 0;
|
||||
int n = val.length;
|
||||
|
||||
// With a knapsack of 0 capacity, no items can be included, so the value is 0
|
||||
assertEquals(0, BruteForceKnapsack.knapSack(w, wt, val, n));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testKnapSackSingleItemFits() {
|
||||
int[] val = {100};
|
||||
int[] wt = {20};
|
||||
int w = 30;
|
||||
int n = val.length;
|
||||
|
||||
// Only one item, and it fits in the knapsack, so the result is 100
|
||||
assertEquals(100, BruteForceKnapsack.knapSack(w, wt, val, n));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testKnapSackSingleItemDoesNotFit() {
|
||||
int[] val = {100};
|
||||
int[] wt = {20};
|
||||
int w = 10;
|
||||
int n = val.length;
|
||||
|
||||
// Single item does not fit in the knapsack, so the result is 0
|
||||
assertEquals(0, BruteForceKnapsack.knapSack(w, wt, val, n));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testKnapSackAllItemsFit() {
|
||||
int[] val = {20, 30, 40};
|
||||
int[] wt = {1, 2, 3};
|
||||
int w = 6;
|
||||
int n = val.length;
|
||||
|
||||
// All items fit into the knapsack, so the result is the sum of all values (20 + 30 + 40 = 90)
|
||||
assertEquals(90, BruteForceKnapsack.knapSack(w, wt, val, n));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testKnapSackNoneFit() {
|
||||
int[] val = {100, 200, 300};
|
||||
int[] wt = {100, 200, 300};
|
||||
int w = 50;
|
||||
int n = val.length;
|
||||
|
||||
// None of the items fit into the knapsack, so the result is 0
|
||||
assertEquals(0, BruteForceKnapsack.knapSack(w, wt, val, n));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testKnapSackSomeItemsFit() {
|
||||
int[] val = {60, 100, 120};
|
||||
int[] wt = {10, 20, 30};
|
||||
int w = 40;
|
||||
int n = val.length;
|
||||
|
||||
// Here, only the 2nd and 1st items should be included for a total value of 160
|
||||
assertEquals(180, BruteForceKnapsack.knapSack(w, wt, val, n));
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user