mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-08 02:04:31 +08:00
Add Palindromic Paritioning (#2386)
This commit is contained in:
94
DynamicProgramming/PalindromicPartitioning.java
Normal file
94
DynamicProgramming/PalindromicPartitioning.java
Normal file
@ -0,0 +1,94 @@
|
||||
package DynamicProgramming;
|
||||
/**
|
||||
* @file
|
||||
* @brief Implements [Palindrome
|
||||
* Partitioning](https://leetcode.com/problems/palindrome-partitioning-ii/)
|
||||
* algorithm, giving you the minimum number of partitions you need to make
|
||||
*
|
||||
* @details
|
||||
* palindrome partitioning uses dynamic programming and goes to all the possible
|
||||
* partitions to find the minimum you are given a string and you need to give
|
||||
* minimum number of partitions needed to divide it into a number of palindromes
|
||||
* [Palindrome Partitioning]
|
||||
* (https://www.geeksforgeeks.org/palindrome-partitioning-dp-17/) overall time
|
||||
* complexity O(n^2) For example: example 1:- String : "nitik" Output : 2 => "n
|
||||
* | iti | k" For example: example 2:- String : "ababbbabbababa" Output : 3 =>
|
||||
* "aba | b | bbabb | ababa"
|
||||
* @author [Syed] (https://github.com/roeticvampire)
|
||||
*/
|
||||
|
||||
import java.util.Scanner;
|
||||
|
||||
public class PalindromicPartitioning {
|
||||
|
||||
public static int minimalpartitions(String word){
|
||||
int len=word.length();
|
||||
/* We Make two arrays to create a bottom-up solution.
|
||||
minCuts[i] = Minimum number of cuts needed for palindrome partitioning of substring word[0..i]
|
||||
isPalindrome[i][j] = true if substring str[i..j] is palindrome
|
||||
Base Condition: C[i] is 0 if P[0][i]= true
|
||||
*/
|
||||
int[] minCuts = new int[len];
|
||||
boolean[][] isPalindrome = new boolean[len][len];
|
||||
|
||||
int i, j, k, L; // different looping variables
|
||||
|
||||
// Every substring of length 1 is a palindrome
|
||||
for (i = 0; i < len; i++) {
|
||||
isPalindrome[i][i] = true;
|
||||
}
|
||||
|
||||
/* L is substring length. Build the solution in bottom up manner by considering all substrings of length starting from 2 to n. */
|
||||
for (L = 2; L <= len; L++) {
|
||||
// For substring of length L, set different possible starting indexes
|
||||
for (i = 0; i < len - L + 1; i++) {
|
||||
j = i + L - 1; // Ending index
|
||||
// If L is 2, then we just need to
|
||||
// compare two characters. Else need to
|
||||
// check two corner characters and value
|
||||
// of P[i+1][j-1]
|
||||
if (L == 2)
|
||||
isPalindrome[i][j] = (word.charAt(i) == word.charAt(j));
|
||||
else
|
||||
{
|
||||
if((word.charAt(i) == word.charAt(j)) && isPalindrome[i + 1][j - 1])
|
||||
isPalindrome[i][j] =true;
|
||||
else
|
||||
isPalindrome[i][j]=false;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//We find the minimum for each index
|
||||
for (i = 0; i < len; i++) {
|
||||
if (isPalindrome[0][i] == true)
|
||||
minCuts[i] = 0;
|
||||
else {
|
||||
minCuts[i] = Integer.MAX_VALUE;
|
||||
for (j = 0; j < i; j++) {
|
||||
if (isPalindrome[j + 1][i] == true && 1 + minCuts[j] < minCuts[i])
|
||||
minCuts[i] = 1 + minCuts[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Return the min cut value for complete
|
||||
// string. i.e., str[0..n-1]
|
||||
return minCuts[len - 1];
|
||||
}
|
||||
|
||||
|
||||
|
||||
public static void main(String[] args) {
|
||||
Scanner input = new Scanner(System.in);
|
||||
String word;
|
||||
System.out.println("Enter the First String");
|
||||
word = input.nextLine();
|
||||
// ans stores the final minimal cut count needed for partitioning
|
||||
int ans = minimalpartitions(word);
|
||||
System.out.println(
|
||||
"The minimum cuts needed to partition \"" + word + "\" into palindromes is " + ans);
|
||||
input.close();
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user