Add Macro benchmark

Signed-off-by: Ayase Minori <ayane@vignetteapp.org>
This commit is contained in:
Ayase Minori
2024-04-06 22:07:08 +08:00
parent f25b832c06
commit 025c377c1b
3 changed files with 143 additions and 0 deletions

View File

@ -0,0 +1,79 @@
// Copyright (c) homuler and The Vignette Authors
// This file is part of MediaPipe.NET.
// MediaPipe.NET is licensed under the MIT License. See LICENSE for details.
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Engines;
using Mediapipe.Net.Framework;
using Mediapipe.Net.Framework.Packets;
using Mediapipe.Net.Framework.Protobuf;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using ImageFrame = Mediapipe.Net.Framework.Format.ImageFrame;
namespace Mediapipe.Net.Benchmarks
{
[SimpleJob(RunStrategy.Throughput, launchCount: 20, warmupCount: 10)]
[MinColumn, MaxColumn, MeanColumn,MedianColumn]
public class BlazeNetBenchmark
{
private readonly ImageFrame referenceFrame;
public BlazeNetBenchmark()
{
var rawImage = Image.Load<Rgba32>("TestData/reference.png");
// convert to span first before converting to ImageFrame
var rawImageSpan = new Span<byte>();
rawImage.CopyPixelDataTo(rawImageSpan);
// widthStep is a thing from opencv, so we'll need to calculate it ourselves
// this is calculated as width * bits per pixel, so rgba32 would be 4 bytes per pixel
var widthStep = rawImage.Width * rawImage.PixelType.BitsPerPixel;
referenceFrame = new ImageFrame(ImageFormat.Types.Format.Sbgra, rawImage.Width, rawImage.Height, widthStep, rawImageSpan);
}
[Benchmark]
public void BlazeFaceBenchmark()
{
// read pbtxt file to a string
var graphCfg = File.ReadAllText("TestData/face_detection_front_cpu.pbtxt");
var graph = new CalculatorGraph(graphCfg);
var poller = graph.AddOutputStreamPoller<ImageFrame>("output_video").Value();
graph.ObserveOutputStream<NormalizedLandmarkListPacket, NormalizedLandmarkList>("multi_face_landmarks",
(packet) =>
{
var landmarks = packet.Get();
// report the landmarks
foreach (var landmark in landmarks.Landmark)
{
Console.WriteLine($"Landmark: {landmark.X}, {landmark.Y}, {landmark.Z}");
// do we have accuracy data too?
if (landmark.HasVisibility)
{
Console.WriteLine($"Visibility: {landmark.Visibility}");
}
}
}, out var cbHandle).AssertOk();
// start the graph
graph.StartRun().AssertOk();
// send the image to the graph
var inputFrame = new ImageFramePacket(referenceFrame);
graph.AddPacketToInputStream("input_video", inputFrame).AssertOk();
// wait for the graph to finish
graph.WaitUntilIdle().AssertOk();
// close the graph and clean up
graph.CloseInputStream("input_video").AssertOk();
graph.WaitUntilDone().AssertOk();
cbHandle.Free();
}
}
}

View File

@ -10,6 +10,7 @@
<ItemGroup>
<PackageReference Include="BenchmarkDotNet" Version="0.13.12" />
<PackageReference Include="Mediapipe.Net.Runtime.CPU" Version="0.9.1" />
<PackageReference Include="SixLabors.ImageSharp" Version="3.1.3" />
</ItemGroup>
<ItemGroup>

View File

@ -0,0 +1,63 @@
# MediaPipe graph that performs face mesh with TensorFlow Lite on CPU.
# Input image. (ImageFrame)
input_stream: "input_video"
# Output image with rendered results. (ImageFrame)
output_stream: "output_video"
# Collection of detected/processed faces, each represented as a list of
# landmarks. (std::vector<NormalizedLandmarkList>)
output_stream: "multi_face_landmarks"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Defines side packets for further use in the graph.
node {
calculator: "ConstantSidePacketCalculator"
output_side_packet: "PACKET:num_faces"
node_options: {
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
packet { int_value: 1 }
}
}
}
# Subgraph that detects faces and corresponding landmarks.
node {
calculator: "FaceLandmarkFrontCpu"
input_stream: "IMAGE:throttled_input_video"
input_side_packet: "NUM_FACES:num_faces"
output_stream: "LANDMARKS:multi_face_landmarks"
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
output_stream: "DETECTIONS:face_detections"
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
}
# Subgraph that renders face-landmark annotation onto the input image.
node {
calculator: "FaceRendererCpu"
input_stream: "IMAGE:throttled_input_video"
input_stream: "LANDMARKS:multi_face_landmarks"
input_stream: "NORM_RECTS:face_rects_from_landmarks"
input_stream: "DETECTIONS:face_detections"
output_stream: "IMAGE:output_video"
}