Files
esp32-opencv/modules/features2d/src/kaze/AKAZEFeatures.cpp
2020-03-23 11:48:41 +01:00

2318 lines
73 KiB
C++

/**
* @file AKAZEFeatures.cpp
* @brief Main class for detecting and describing binary features in an
* accelerated nonlinear scale space
* @date Sep 15, 2013
* @author Pablo F. Alcantarilla, Jesus Nuevo
*/
#include "../precomp.hpp"
#include "AKAZEFeatures.h"
#include "fed.h"
#include "nldiffusion_functions.h"
#include "utils.h"
#include "opencl_kernels_features2d.hpp"
#include <iostream>
// Namespaces
namespace cv
{
using namespace std;
/* ************************************************************************* */
/**
* @brief AKAZEFeatures constructor with input options
* @param options AKAZEFeatures configuration options
* @note This constructor allocates memory for the nonlinear scale space
*/
AKAZEFeatures::AKAZEFeatures(const AKAZEOptions& options) : options_(options) {
ncycles_ = 0;
reordering_ = true;
if (options_.descriptor_size > 0 && options_.descriptor >= AKAZE::DESCRIPTOR_MLDB_UPRIGHT) {
generateDescriptorSubsample(descriptorSamples_, descriptorBits_, options_.descriptor_size,
options_.descriptor_pattern_size, options_.descriptor_channels);
}
Allocate_Memory_Evolution();
}
/* ************************************************************************* */
/**
* @brief This method allocates the memory for the nonlinear diffusion evolution
*/
void AKAZEFeatures::Allocate_Memory_Evolution(void) {
CV_INSTRUMENT_REGION();
float rfactor = 0.0f;
int level_height = 0, level_width = 0;
// maximum size of the area for the descriptor computation
float smax = 0.0;
if (options_.descriptor == AKAZE::DESCRIPTOR_MLDB_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_MLDB) {
smax = 10.0f*sqrtf(2.0f);
}
else if (options_.descriptor == AKAZE::DESCRIPTOR_KAZE_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_KAZE) {
smax = 12.0f*sqrtf(2.0f);
}
// Allocate the dimension of the matrices for the evolution
for (int i = 0, power = 1; i <= options_.omax - 1; i++, power *= 2) {
rfactor = 1.0f / power;
level_height = (int)(options_.img_height*rfactor);
level_width = (int)(options_.img_width*rfactor);
// Smallest possible octave and allow one scale if the image is small
if ((level_width < 80 || level_height < 40) && i != 0) {
options_.omax = i;
break;
}
for (int j = 0; j < options_.nsublevels; j++) {
MEvolution step;
step.size = Size(level_width, level_height);
step.esigma = options_.soffset*pow(2.f, (float)(j) / (float)(options_.nsublevels) + i);
step.sigma_size = cvRound(step.esigma * options_.derivative_factor / power); // In fact sigma_size only depends on j
step.etime = 0.5f * (step.esigma * step.esigma);
step.octave = i;
step.sublevel = j;
step.octave_ratio = (float)power;
step.border = cvRound(smax * step.sigma_size) + 1;
evolution_.push_back(step);
}
}
// Allocate memory for the number of cycles and time steps
for (size_t i = 1; i < evolution_.size(); i++) {
int naux = 0;
vector<float> tau;
float ttime = 0.0f;
ttime = evolution_[i].etime - evolution_[i - 1].etime;
naux = fed_tau_by_process_time(ttime, 1, 0.25f, reordering_, tau);
nsteps_.push_back(naux);
tsteps_.push_back(tau);
ncycles_++;
}
}
/* ************************************************************************* */
/**
* @brief Computes kernel size for Gaussian smoothing if the image
* @param sigma Kernel standard deviation
* @returns kernel size
*/
static inline int getGaussianKernelSize(float sigma) {
// Compute an appropriate kernel size according to the specified sigma
int ksize = (int)cvCeil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f)));
ksize |= 1; // kernel should be odd
return ksize;
}
/* ************************************************************************* */
/**
* @brief This function computes a scalar non-linear diffusion step
* @param Lt Base image in the evolution
* @param Lf Conductivity image
* @param Lstep Output image that gives the difference between the current
* Ld and the next Ld being evolved
* @param row_begin row where to start
* @param row_end last row to fill exclusive. the range is [row_begin, row_end).
* @note Forward Euler Scheme 3x3 stencil
* The function c is a scalar value that depends on the gradient norm
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy
*/
static inline void
nld_step_scalar_one_lane(const Mat& Lt, const Mat& Lf, Mat& Lstep, float step_size, int row_begin, int row_end)
{
CV_INSTRUMENT_REGION();
/* The labeling scheme for this five star stencil:
[ a ]
[ -1 c +1 ]
[ b ]
*/
Lstep.create(Lt.size(), Lt.type());
const int cols = Lt.cols - 2;
int row = row_begin;
const float *lt_a, *lt_c, *lt_b;
const float *lf_a, *lf_c, *lf_b;
float *dst;
float step_r = 0.f;
// Process the top row
if (row == 0) {
lt_c = Lt.ptr<float>(0) + 1; /* Skip the left-most column by +1 */
lf_c = Lf.ptr<float>(0) + 1;
lt_b = Lt.ptr<float>(1) + 1;
lf_b = Lf.ptr<float>(1) + 1;
// fill the corner to prevent uninitialized values
dst = Lstep.ptr<float>(0);
dst[0] = 0.0f;
++dst;
for (int j = 0; j < cols; j++) {
step_r = (lf_c[j] + lf_c[j + 1])*(lt_c[j + 1] - lt_c[j]) +
(lf_c[j] + lf_c[j - 1])*(lt_c[j - 1] - lt_c[j]) +
(lf_c[j] + lf_b[j ])*(lt_b[j ] - lt_c[j]);
dst[j] = step_r * step_size;
}
// fill the corner to prevent uninitialized values
dst[cols] = 0.0f;
++row;
}
// Process the middle rows
int middle_end = std::min(Lt.rows - 1, row_end);
for (; row < middle_end; ++row)
{
lt_a = Lt.ptr<float>(row - 1);
lf_a = Lf.ptr<float>(row - 1);
lt_c = Lt.ptr<float>(row );
lf_c = Lf.ptr<float>(row );
lt_b = Lt.ptr<float>(row + 1);
lf_b = Lf.ptr<float>(row + 1);
dst = Lstep.ptr<float>(row);
// The left-most column
step_r = (lf_c[0] + lf_c[1])*(lt_c[1] - lt_c[0]) +
(lf_c[0] + lf_b[0])*(lt_b[0] - lt_c[0]) +
(lf_c[0] + lf_a[0])*(lt_a[0] - lt_c[0]);
dst[0] = step_r * step_size;
lt_a++; lt_c++; lt_b++;
lf_a++; lf_c++; lf_b++;
dst++;
// The middle columns
for (int j = 0; j < cols; j++)
{
step_r = (lf_c[j] + lf_c[j + 1])*(lt_c[j + 1] - lt_c[j]) +
(lf_c[j] + lf_c[j - 1])*(lt_c[j - 1] - lt_c[j]) +
(lf_c[j] + lf_b[j ])*(lt_b[j ] - lt_c[j]) +
(lf_c[j] + lf_a[j ])*(lt_a[j ] - lt_c[j]);
dst[j] = step_r * step_size;
}
// The right-most column
step_r = (lf_c[cols] + lf_c[cols - 1])*(lt_c[cols - 1] - lt_c[cols]) +
(lf_c[cols] + lf_b[cols ])*(lt_b[cols ] - lt_c[cols]) +
(lf_c[cols] + lf_a[cols ])*(lt_a[cols ] - lt_c[cols]);
dst[cols] = step_r * step_size;
}
// Process the bottom row (row == Lt.rows - 1)
if (row_end == Lt.rows) {
lt_a = Lt.ptr<float>(row - 1) + 1; /* Skip the left-most column by +1 */
lf_a = Lf.ptr<float>(row - 1) + 1;
lt_c = Lt.ptr<float>(row ) + 1;
lf_c = Lf.ptr<float>(row ) + 1;
// fill the corner to prevent uninitialized values
dst = Lstep.ptr<float>(row);
dst[0] = 0.0f;
++dst;
for (int j = 0; j < cols; j++) {
step_r = (lf_c[j] + lf_c[j + 1])*(lt_c[j + 1] - lt_c[j]) +
(lf_c[j] + lf_c[j - 1])*(lt_c[j - 1] - lt_c[j]) +
(lf_c[j] + lf_a[j ])*(lt_a[j ] - lt_c[j]);
dst[j] = step_r * step_size;
}
// fill the corner to prevent uninitialized values
dst[cols] = 0.0f;
}
}
class NonLinearScalarDiffusionStep : public ParallelLoopBody
{
public:
NonLinearScalarDiffusionStep(const Mat& Lt, const Mat& Lf, Mat& Lstep, float step_size)
: Lt_(&Lt), Lf_(&Lf), Lstep_(&Lstep), step_size_(step_size)
{}
void operator()(const Range& range) const CV_OVERRIDE
{
nld_step_scalar_one_lane(*Lt_, *Lf_, *Lstep_, step_size_, range.start, range.end);
}
private:
const Mat* Lt_;
const Mat* Lf_;
Mat* Lstep_;
float step_size_;
};
#ifdef HAVE_OPENCL
static inline bool
ocl_non_linear_diffusion_step(InputArray Lt_, InputArray Lf_, OutputArray Lstep_, float step_size)
{
if(!Lt_.isContinuous())
return false;
UMat Lt = Lt_.getUMat();
UMat Lf = Lf_.getUMat();
UMat Lstep = Lstep_.getUMat();
size_t globalSize[] = {(size_t)Lt.cols, (size_t)Lt.rows};
ocl::Kernel ker("AKAZE_nld_step_scalar", ocl::features2d::akaze_oclsrc);
if( ker.empty() )
return false;
return ker.args(
ocl::KernelArg::ReadOnly(Lt),
ocl::KernelArg::PtrReadOnly(Lf),
ocl::KernelArg::PtrWriteOnly(Lstep),
step_size).run(2, globalSize, 0, true);
}
#endif // HAVE_OPENCL
static inline void
non_linear_diffusion_step(InputArray Lt_, InputArray Lf_, OutputArray Lstep_, float step_size)
{
CV_INSTRUMENT_REGION();
Lstep_.create(Lt_.size(), Lt_.type());
CV_OCL_RUN(Lt_.isUMat() && Lf_.isUMat() && Lstep_.isUMat(),
ocl_non_linear_diffusion_step(Lt_, Lf_, Lstep_, step_size));
Mat Lt = Lt_.getMat();
Mat Lf = Lf_.getMat();
Mat Lstep = Lstep_.getMat();
parallel_for_(Range(0, Lt.rows), NonLinearScalarDiffusionStep(Lt, Lf, Lstep, step_size));
}
/**
* @brief This function computes a good empirical value for the k contrast factor
* given two gradient images, the percentile (0-1), the temporal storage to hold
* gradient norms and the histogram bins
* @param Lx Horizontal gradient of the input image
* @param Ly Vertical gradient of the input image
* @param nbins Number of histogram bins
* @return k contrast factor
*/
static inline float
compute_kcontrast(InputArray Lx_, InputArray Ly_, float perc, int nbins)
{
CV_INSTRUMENT_REGION();
CV_Assert(nbins > 2);
CV_Assert(!Lx_.empty());
Mat Lx = Lx_.getMat();
Mat Ly = Ly_.getMat();
// temporary square roots of dot product
Mat modgs (Lx.rows - 2, Lx.cols - 2, CV_32F);
const int total = modgs.cols * modgs.rows;
float *modg = modgs.ptr<float>();
float hmax = 0.0f;
for (int i = 1; i < Lx.rows - 1; i++) {
const float *lx = Lx.ptr<float>(i) + 1;
const float *ly = Ly.ptr<float>(i) + 1;
const int cols = Lx.cols - 2;
for (int j = 0; j < cols; j++) {
float dist = sqrtf(lx[j] * lx[j] + ly[j] * ly[j]);
*modg++ = dist;
hmax = std::max(hmax, dist);
}
}
modg = modgs.ptr<float>();
if (hmax == 0.0f)
return 0.03f; // e.g. a blank image
// Compute the bin numbers: the value range [0, hmax] -> [0, nbins-1]
modgs *= (nbins - 1) / hmax;
// Count up histogram
std::vector<int> hist(nbins, 0);
for (int i = 0; i < total; i++)
hist[(int)modg[i]]++;
// Now find the perc of the histogram percentile
const int nthreshold = (int)((total - hist[0]) * perc); // Exclude hist[0] as background
int nelements = 0;
for (int k = 1; k < nbins; k++) {
if (nelements >= nthreshold)
return (float)hmax * k / nbins;
nelements += hist[k];
}
return 0.03f;
}
#ifdef HAVE_OPENCL
static inline bool
ocl_pm_g2(InputArray Lx_, InputArray Ly_, OutputArray Lflow_, float kcontrast)
{
UMat Lx = Lx_.getUMat();
UMat Ly = Ly_.getUMat();
UMat Lflow = Lflow_.getUMat();
int total = Lx.rows * Lx.cols;
size_t globalSize[] = {(size_t)total};
ocl::Kernel ker("AKAZE_pm_g2", ocl::features2d::akaze_oclsrc);
if( ker.empty() )
return false;
return ker.args(
ocl::KernelArg::PtrReadOnly(Lx),
ocl::KernelArg::PtrReadOnly(Ly),
ocl::KernelArg::PtrWriteOnly(Lflow),
kcontrast, total).run(1, globalSize, 0, true);
}
#endif // HAVE_OPENCL
static inline void
compute_diffusivity(InputArray Lx, InputArray Ly, OutputArray Lflow, float kcontrast, KAZE::DiffusivityType diffusivity)
{
CV_INSTRUMENT_REGION();
Lflow.create(Lx.size(), Lx.type());
switch (diffusivity) {
case KAZE::DIFF_PM_G1:
pm_g1(Lx, Ly, Lflow, kcontrast);
break;
case KAZE::DIFF_PM_G2:
CV_OCL_RUN(Lx.isUMat() && Ly.isUMat() && Lflow.isUMat(), ocl_pm_g2(Lx, Ly, Lflow, kcontrast));
pm_g2(Lx, Ly, Lflow, kcontrast);
break;
case KAZE::DIFF_WEICKERT:
weickert_diffusivity(Lx, Ly, Lflow, kcontrast);
break;
case KAZE::DIFF_CHARBONNIER:
charbonnier_diffusivity(Lx, Ly, Lflow, kcontrast);
break;
default:
CV_Error_(Error::StsError, ("Diffusivity is not supported: %d", static_cast<int>(diffusivity)));
break;
}
}
/**
* @brief Converts input image to grayscale float image
*
* @param image any image
* @param dst grayscale float image
*/
static inline void prepareInputImage(InputArray image, OutputArray dst)
{
Mat img = image.getMat();
if (img.channels() > 1)
cvtColor(image, img, COLOR_BGR2GRAY);
if ( img.depth() == CV_32F )
dst.assign(img);
else if ( img.depth() == CV_8U )
img.convertTo(dst, CV_32F, 1.0 / 255.0, 0);
else if ( img.depth() == CV_16U )
img.convertTo(dst, CV_32F, 1.0 / 65535.0, 0);
}
/**
* @brief This method creates the nonlinear scale space for a given image
* @param image Input image for which the nonlinear scale space needs to be created
*/
template<typename MatType>
static inline void
create_nonlinear_scale_space(InputArray image, const AKAZEOptions &options,
const std::vector<std::vector<float > > &tsteps_evolution, std::vector<Evolution<MatType> > &evolution)
{
CV_INSTRUMENT_REGION();
CV_Assert(evolution.size() > 0);
// convert input to grayscale float image if needed
MatType img;
prepareInputImage(image, img);
// create first level of the evolution
int ksize = getGaussianKernelSize(options.soffset);
GaussianBlur(img, evolution[0].Lsmooth, Size(ksize, ksize), options.soffset, options.soffset, BORDER_REPLICATE);
evolution[0].Lsmooth.copyTo(evolution[0].Lt);
if (evolution.size() == 1) {
// we don't need to compute kcontrast factor
Compute_Determinant_Hessian_Response(evolution);
return;
}
// derivatives, flow and diffusion step
MatType Lx, Ly, Lsmooth, Lflow, Lstep;
// compute derivatives for computing k contrast
GaussianBlur(img, Lsmooth, Size(5, 5), 1.0f, 1.0f, BORDER_REPLICATE);
Scharr(Lsmooth, Lx, CV_32F, 1, 0, 1, 0, BORDER_DEFAULT);
Scharr(Lsmooth, Ly, CV_32F, 0, 1, 1, 0, BORDER_DEFAULT);
Lsmooth.release();
// compute the kcontrast factor
float kcontrast = compute_kcontrast(Lx, Ly, options.kcontrast_percentile, options.kcontrast_nbins);
// Now generate the rest of evolution levels
for (size_t i = 1; i < evolution.size(); i++) {
Evolution<MatType> &e = evolution[i];
if (e.octave > evolution[i - 1].octave) {
// new octave will be half the size
resize(evolution[i - 1].Lt, e.Lt, e.size, 0, 0, INTER_AREA);
kcontrast *= 0.75f;
}
else {
evolution[i - 1].Lt.copyTo(e.Lt);
}
GaussianBlur(e.Lt, e.Lsmooth, Size(5, 5), 1.0f, 1.0f, BORDER_REPLICATE);
// Compute the Gaussian derivatives Lx and Ly
Scharr(e.Lsmooth, Lx, CV_32F, 1, 0, 1.0, 0, BORDER_DEFAULT);
Scharr(e.Lsmooth, Ly, CV_32F, 0, 1, 1.0, 0, BORDER_DEFAULT);
// Compute the conductivity equation
compute_diffusivity(Lx, Ly, Lflow, kcontrast, options.diffusivity);
// Perform Fast Explicit Diffusion on Lt
const std::vector<float> &tsteps = tsteps_evolution[i - 1];
for (size_t j = 0; j < tsteps.size(); j++) {
const float step_size = tsteps[j] * 0.5f;
non_linear_diffusion_step(e.Lt, Lflow, Lstep, step_size);
add(e.Lt, Lstep, e.Lt);
}
}
Compute_Determinant_Hessian_Response(evolution);
return;
}
/**
* @brief Converts between UMatPyramid and Pyramid and vice versa
* @details Matrices in evolution levels will be copied
*
* @param src source pyramid
* @param dst destination pyramid
*/
template<typename MatTypeSrc, typename MatTypeDst>
static inline void
convertScalePyramid(const std::vector<Evolution<MatTypeSrc> >& src, std::vector<Evolution<MatTypeDst> > &dst)
{
dst.resize(src.size());
for (size_t i = 0; i < src.size(); ++i) {
dst[i] = Evolution<MatTypeDst>(src[i]);
}
}
/**
* @brief This method creates the nonlinear scale space for a given image
* @param image Input image for which the nonlinear scale space needs to be created
*/
void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray image)
{
if (ocl::isOpenCLActivated() && image.isUMat()) {
// will run OCL version of scale space pyramid
UMatPyramid uPyr;
// init UMat pyramid with sizes
convertScalePyramid(evolution_, uPyr);
create_nonlinear_scale_space(image, options_, tsteps_, uPyr);
// download pyramid from GPU
convertScalePyramid(uPyr, evolution_);
} else {
// CPU version
create_nonlinear_scale_space(image, options_, tsteps_, evolution_);
}
}
/* ************************************************************************* */
#ifdef HAVE_OPENCL
static inline bool
ocl_compute_determinant(InputArray Lxx_, InputArray Lxy_, InputArray Lyy_,
OutputArray Ldet_, float sigma)
{
UMat Lxx = Lxx_.getUMat();
UMat Lxy = Lxy_.getUMat();
UMat Lyy = Lyy_.getUMat();
UMat Ldet = Ldet_.getUMat();
const int total = Lxx.rows * Lxx.cols;
size_t globalSize[] = {(size_t)total};
ocl::Kernel ker("AKAZE_compute_determinant", ocl::features2d::akaze_oclsrc);
if( ker.empty() )
return false;
return ker.args(
ocl::KernelArg::PtrReadOnly(Lxx),
ocl::KernelArg::PtrReadOnly(Lxy),
ocl::KernelArg::PtrReadOnly(Lyy),
ocl::KernelArg::PtrWriteOnly(Ldet),
sigma, total).run(1, globalSize, 0, true);
}
#endif // HAVE_OPENCL
/**
* @brief Compute determinant from hessians
* @details Compute Ldet by (Lxx.mul(Lyy) - Lxy.mul(Lxy)) * sigma
*
* @param Lxx spatial derivates
* @param Lxy spatial derivates
* @param Lyy spatial derivates
* @param Ldet output determinant
* @param sigma determinant will be scaled by this sigma
*/
static inline void compute_determinant(InputArray Lxx_, InputArray Lxy_, InputArray Lyy_,
OutputArray Ldet_, float sigma)
{
CV_INSTRUMENT_REGION();
Ldet_.create(Lxx_.size(), Lxx_.type());
CV_OCL_RUN(Lxx_.isUMat() && Ldet_.isUMat(), ocl_compute_determinant(Lxx_, Lxy_, Lyy_, Ldet_, sigma));
// output determinant
Mat Lxx = Lxx_.getMat(), Lxy = Lxy_.getMat(), Lyy = Lyy_.getMat(), Ldet = Ldet_.getMat();
float *lxx = Lxx.ptr<float>();
float *lxy = Lxy.ptr<float>();
float *lyy = Lyy.ptr<float>();
float *ldet = Ldet.ptr<float>();
const int total = Lxx.cols * Lxx.rows;
for (int j = 0; j < total; j++) {
ldet[j] = (lxx[j] * lyy[j] - lxy[j] * lxy[j]) * sigma;
}
}
template <typename MatType>
class DeterminantHessianResponse : public ParallelLoopBody
{
public:
explicit DeterminantHessianResponse(std::vector<Evolution<MatType> >& ev)
: evolution_(&ev)
{
}
void operator()(const Range& range) const CV_OVERRIDE
{
MatType Lxx, Lxy, Lyy;
for (int i = range.start; i < range.end; i++)
{
Evolution<MatType> &e = (*evolution_)[i];
// we cannot use cv:Scharr here, because we need to handle also
// kernel sizes other than 3, by default we are using 9x9, 5x5 and 7x7
// compute kernels
Mat DxKx, DxKy, DyKx, DyKy;
compute_derivative_kernels(DxKx, DxKy, 1, 0, e.sigma_size);
compute_derivative_kernels(DyKx, DyKy, 0, 1, e.sigma_size);
// compute the multiscale derivatives
sepFilter2D(e.Lsmooth, e.Lx, CV_32F, DxKx, DxKy);
sepFilter2D(e.Lx, Lxx, CV_32F, DxKx, DxKy);
sepFilter2D(e.Lx, Lxy, CV_32F, DyKx, DyKy);
sepFilter2D(e.Lsmooth, e.Ly, CV_32F, DyKx, DyKy);
sepFilter2D(e.Ly, Lyy, CV_32F, DyKx, DyKy);
// free Lsmooth to same some space in the pyramid, it is not needed anymore
e.Lsmooth.release();
// compute determinant scaled by sigma
float sigma_size_quat = (float)(e.sigma_size * e.sigma_size * e.sigma_size * e.sigma_size);
compute_determinant(Lxx, Lxy, Lyy, e.Ldet, sigma_size_quat);
}
}
private:
std::vector<Evolution<MatType> >* evolution_;
};
/**
* @brief This method computes the feature detector response for the nonlinear scale space
* @details OCL version
* @note We use the Hessian determinant as the feature detector response
*/
static inline void
Compute_Determinant_Hessian_Response(UMatPyramid &evolution) {
CV_INSTRUMENT_REGION();
DeterminantHessianResponse<UMat> body (evolution);
body(Range(0, (int)evolution.size()));
}
/**
* @brief This method computes the feature detector response for the nonlinear scale space
* @details CPU version
* @note We use the Hessian determinant as the feature detector response
*/
static inline void
Compute_Determinant_Hessian_Response(Pyramid &evolution) {
CV_INSTRUMENT_REGION();
parallel_for_(Range(0, (int)evolution.size()), DeterminantHessianResponse<Mat>(evolution));
}
/* ************************************************************************* */
/**
* @brief This method selects interesting keypoints through the nonlinear scale space
* @param kpts Vector of detected keypoints
*/
void AKAZEFeatures::Feature_Detection(std::vector<KeyPoint>& kpts)
{
CV_INSTRUMENT_REGION();
kpts.clear();
std::vector<Mat> keypoints_by_layers;
Find_Scale_Space_Extrema(keypoints_by_layers);
Do_Subpixel_Refinement(keypoints_by_layers, kpts);
Compute_Keypoints_Orientation(kpts);
}
/**
* @brief This method searches v for a neighbor point of the point candidate p
* @param x Coordinates of the keypoint candidate to search a neighbor
* @param y Coordinates of the keypoint candidate to search a neighbor
* @param mask Matrix holding keypoints positions
* @param search_radius neighbour radius for searching keypoints
* @param idx The index to mask, pointing to keypoint found.
* @return true if a neighbor point is found; false otherwise
*/
static inline bool
find_neighbor_point(const int x, const int y, const Mat &mask, const int search_radius, int &idx)
{
// search neighborhood for keypoints
for (int i = y - search_radius; i < y + search_radius; ++i) {
const uchar *curr = mask.ptr<uchar>(i);
for (int j = x - search_radius; j < x + search_radius; ++j) {
if (curr[j] == 0) {
continue; // skip non-keypoint
}
// fine-compare with L2 metric (L2 is smaller than our search window)
int dx = j - x;
int dy = i - y;
if (dx * dx + dy * dy <= search_radius * search_radius) {
idx = i * mask.cols + j;
return true;
}
}
}
return false;
}
/**
* @brief Find keypoints in parallel for each pyramid layer
*/
class FindKeypointsSameScale : public ParallelLoopBody
{
public:
explicit FindKeypointsSameScale(const Pyramid& ev,
std::vector<Mat>& kpts, float dthreshold)
: evolution_(&ev), keypoints_by_layers_(&kpts), dthreshold_(dthreshold)
{}
void operator()(const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
const MEvolution &e = (*evolution_)[i];
Mat &kpts = (*keypoints_by_layers_)[i];
// this mask will hold positions of keypoints in this level
kpts = Mat::zeros(e.Ldet.size(), CV_8UC1);
// if border is too big we shouldn't search any keypoints
if (e.border + 1 >= e.Ldet.rows)
continue;
const float * prev = e.Ldet.ptr<float>(e.border - 1);
const float * curr = e.Ldet.ptr<float>(e.border );
const float * next = e.Ldet.ptr<float>(e.border + 1);
const float * ldet = e.Ldet.ptr<float>();
uchar *mask = kpts.ptr<uchar>();
const int search_radius = e.sigma_size; // size of keypoint in this level
for (int y = e.border; y < e.Ldet.rows - e.border; y++) {
for (int x = e.border; x < e.Ldet.cols - e.border; x++) {
const float value = curr[x];
// Filter the points with the detector threshold
if (value <= dthreshold_)
continue;
if (value <= curr[x-1] || value <= curr[x+1])
continue;
if (value <= prev[x-1] || value <= prev[x ] || value <= prev[x+1])
continue;
if (value <= next[x-1] || value <= next[x ] || value <= next[x+1])
continue;
int idx = 0;
// Compare response with the same scale
if (find_neighbor_point(x, y, kpts, search_radius, idx)) {
if (value > ldet[idx]) {
mask[idx] = 0; // clear old point - we have better candidate now
} else {
continue; // there already is a better keypoint
}
}
kpts.at<uchar>(y, x) = 1; // we have a new keypoint
}
prev = curr;
curr = next;
next += e.Ldet.cols;
}
}
}
private:
const Pyramid* evolution_;
std::vector<Mat>* keypoints_by_layers_;
float dthreshold_; ///< Detector response threshold to accept point
};
/**
* @brief This method finds extrema in the nonlinear scale space
* @param keypoints_by_layers Output vectors of detected keypoints; one vector for each evolution level
*/
void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_layers)
{
CV_INSTRUMENT_REGION();
keypoints_by_layers.resize(evolution_.size());
// find points in the same level
parallel_for_(Range(0, (int)evolution_.size()),
FindKeypointsSameScale(evolution_, keypoints_by_layers, options_.dthreshold));
// Filter points with the lower scale level
for (size_t i = 1; i < keypoints_by_layers.size(); i++) {
// constants for this level
const Mat &keypoints = keypoints_by_layers[i];
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>();
uchar *const kpts_prev = keypoints_by_layers[i-1].ptr<uchar>();
const float *const ldet = evolution_[i].Ldet.ptr<float>();
const float *const ldet_prev = evolution_[i-1].Ldet.ptr<float>();
// ratios are just powers of 2
const int diff_ratio = (int)evolution_[i].octave_ratio / (int)evolution_[i-1].octave_ratio;
const int search_radius = evolution_[i].sigma_size * diff_ratio; // size of keypoint in this level
size_t j = 0;
for (int y = 0; y < keypoints.rows; y++) {
for (int x = 0; x < keypoints.cols; x++, j++) {
if (kpts[j] == 0) {
continue; // skip non-keypoints
}
int idx = 0;
// project point to lower scale layer
const int p_x = x * diff_ratio;
const int p_y = y * diff_ratio;
if (find_neighbor_point(p_x, p_y, keypoints_by_layers[i-1], search_radius, idx)) {
if (ldet[j] > ldet_prev[idx]) {
kpts_prev[idx] = 0; // clear keypoint in lower layer
}
// else this pt may be pruned by the upper scale
}
}
}
}
// Now filter points with the upper scale level (the other direction)
for (int i = (int)keypoints_by_layers.size() - 2; i >= 0; i--) {
// constants for this level
const Mat &keypoints = keypoints_by_layers[i];
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>();
uchar *const kpts_next = keypoints_by_layers[i+1].ptr<uchar>();
const float *const ldet = evolution_[i].Ldet.ptr<float>();
const float *const ldet_next = evolution_[i+1].Ldet.ptr<float>();
// ratios are just powers of 2, i+1 ratio is always greater or equal to i
const int diff_ratio = (int)evolution_[i+1].octave_ratio / (int)evolution_[i].octave_ratio;
const int search_radius = evolution_[i+1].sigma_size; // size of keypoints in upper level
size_t j = 0;
for (int y = 0; y < keypoints.rows; y++) {
for (int x = 0; x < keypoints.cols; x++, j++) {
if (kpts[j] == 0) {
continue; // skip non-keypoints
}
int idx = 0;
// project point to upper scale layer
const int p_x = x / diff_ratio;
const int p_y = y / diff_ratio;
if (find_neighbor_point(p_x, p_y, keypoints_by_layers[i+1], search_radius, idx)) {
if (ldet[j] > ldet_next[idx]) {
kpts_next[idx] = 0; // clear keypoint in upper layer
}
}
}
}
}
}
/* ************************************************************************* */
/**
* @brief This method performs subpixel refinement of the detected keypoints
* @param keypoints_by_layers Input vectors of detected keypoints, sorted by evolution levels
* @param kpts Output vector of the final refined keypoints
*/
void AKAZEFeatures::Do_Subpixel_Refinement(
std::vector<Mat>& keypoints_by_layers, std::vector<KeyPoint>& output_keypoints)
{
CV_INSTRUMENT_REGION();
for (size_t i = 0; i < keypoints_by_layers.size(); i++) {
const MEvolution &e = evolution_[i];
const float * const ldet = e.Ldet.ptr<float>();
const float ratio = e.octave_ratio;
const int cols = e.Ldet.cols;
const Mat& keypoints = keypoints_by_layers[i];
const uchar *const kpts = keypoints.ptr<uchar>();
size_t j = 0;
for (int y = 0; y < keypoints.rows; y++) {
for (int x = 0; x < keypoints.cols; x++, j++) {
if (kpts[j] == 0) {
continue; // skip non-keypoints
}
// create a new keypoint
KeyPoint kp;
kp.pt.x = x * e.octave_ratio;
kp.pt.y = y * e.octave_ratio;
kp.size = e.esigma * options_.derivative_factor;
kp.angle = -1;
kp.response = ldet[j];
kp.octave = e.octave;
kp.class_id = static_cast<int>(i);
// Compute the gradient
float Dx = 0.5f * (ldet[ y *cols + x + 1] - ldet[ y *cols + x - 1]);
float Dy = 0.5f * (ldet[(y + 1)*cols + x ] - ldet[(y - 1)*cols + x ]);
// Compute the Hessian
float Dxx = ldet[ y *cols + x + 1] + ldet[ y *cols + x - 1] - 2.0f * ldet[y*cols + x];
float Dyy = ldet[(y + 1)*cols + x ] + ldet[(y - 1)*cols + x ] - 2.0f * ldet[y*cols + x];
float Dxy = 0.25f * (ldet[(y + 1)*cols + x + 1] + ldet[(y - 1)*cols + x - 1] -
ldet[(y - 1)*cols + x + 1] - ldet[(y + 1)*cols + x - 1]);
// Solve the linear system
Matx22f A( Dxx, Dxy,
Dxy, Dyy );
Vec2f b( -Dx, -Dy );
Vec2f dst( 0.0f, 0.0f );
solve(A, b, dst, DECOMP_LU);
float dx = dst(0);
float dy = dst(1);
if (fabs(dx) > 1.0f || fabs(dy) > 1.0f)
continue; // Ignore the point that is not stable
// Refine the coordinates
kp.pt.x += dx * ratio + .5f*(ratio-1.f);
kp.pt.y += dy * ratio + .5f*(ratio-1.f);
kp.angle = 0.0;
kp.size *= 2.0f; // In OpenCV the size of a keypoint is the diameter
// Push the refined keypoint to the final storage
output_keypoints.push_back(kp);
}
}
}
}
/* ************************************************************************* */
class SURF_Descriptor_Upright_64_Invoker : public ParallelLoopBody
{
public:
SURF_Descriptor_Upright_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, const Pyramid& evolution)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
{
}
void operator() (const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Get_SURF_Descriptor_Upright_64((*keypoints_)[i], descriptors_->ptr<float>(i), descriptors_->cols);
}
}
void Get_SURF_Descriptor_Upright_64(const KeyPoint& kpt, float* desc, int desc_size) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
const Pyramid* evolution_;
};
class SURF_Descriptor_64_Invoker : public ParallelLoopBody
{
public:
SURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, Pyramid& evolution)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
{
}
void operator()(const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Get_SURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i), descriptors_->cols);
}
}
void Get_SURF_Descriptor_64(const KeyPoint& kpt, float* desc, int desc_size) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
Pyramid* evolution_;
};
class MSURF_Upright_Descriptor_64_Invoker : public ParallelLoopBody
{
public:
MSURF_Upright_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, Pyramid& evolution)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
{
}
void operator()(const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Get_MSURF_Upright_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i), descriptors_->cols);
}
}
void Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float* desc, int desc_size) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
Pyramid* evolution_;
};
class MSURF_Descriptor_64_Invoker : public ParallelLoopBody
{
public:
MSURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, Pyramid& evolution)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
{
}
void operator() (const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Get_MSURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i), descriptors_->cols);
}
}
void Get_MSURF_Descriptor_64(const KeyPoint& kpt, float* desc, int desc_size) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
Pyramid* evolution_;
};
class Upright_MLDB_Full_Descriptor_Invoker : public ParallelLoopBody
{
public:
Upright_MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, Pyramid& evolution, AKAZEOptions& options)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
, options_(&options)
{
}
void operator() (const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Get_Upright_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i), descriptors_->cols);
}
}
void Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc, int desc_size) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
Pyramid* evolution_;
AKAZEOptions* options_;
};
class Upright_MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody
{
public:
Upright_MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts,
Mat& desc,
Pyramid& evolution,
AKAZEOptions& options,
Mat descriptorSamples,
Mat descriptorBits)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
, options_(&options)
, descriptorSamples_(descriptorSamples)
, descriptorBits_(descriptorBits)
{
}
void operator() (const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Get_Upright_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i), descriptors_->cols);
}
}
void Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc, int desc_size) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
Pyramid* evolution_;
AKAZEOptions* options_;
Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
Mat descriptorBits_;
};
class MLDB_Full_Descriptor_Invoker : public ParallelLoopBody
{
public:
MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, Pyramid& evolution, AKAZEOptions& options)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
, options_(&options)
{
}
void operator() (const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Get_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i), descriptors_->cols);
}
}
void Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc, int desc_size) const;
void MLDB_Fill_Values(float* values, int sample_step, int level,
float xf, float yf, float co, float si, float scale) const;
void MLDB_Binary_Comparisons(float* values, unsigned char* desc,
int count, int& dpos) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
Pyramid* evolution_;
AKAZEOptions* options_;
};
class MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody
{
public:
MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts,
Mat& desc,
Pyramid& evolution,
AKAZEOptions& options,
Mat descriptorSamples,
Mat descriptorBits)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
, options_(&options)
, descriptorSamples_(descriptorSamples)
, descriptorBits_(descriptorBits)
{
}
void operator() (const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Get_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i), descriptors_->cols);
}
}
void Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc, int desc_size) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
Pyramid* evolution_;
AKAZEOptions* options_;
Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
Mat descriptorBits_;
};
/**
* @brief This method computes the set of descriptors through the nonlinear scale space
* @param kpts Vector of detected keypoints
* @param desc Matrix to store the descriptors
*/
void AKAZEFeatures::Compute_Descriptors(std::vector<KeyPoint>& kpts, OutputArray descriptors)
{
CV_INSTRUMENT_REGION();
for(size_t i = 0; i < kpts.size(); i++)
{
CV_Assert(0 <= kpts[i].class_id && kpts[i].class_id < static_cast<int>(evolution_.size()));
}
// Allocate memory for the matrix with the descriptors
int descriptor_size = 64;
int descriptor_type = CV_32FC1;
if (options_.descriptor >= AKAZE::DESCRIPTOR_MLDB_UPRIGHT)
{
int descriptor_bits = (options_.descriptor_size == 0)
? (6 + 36 + 120)*options_.descriptor_channels // the full length binary descriptor -> 486 bits
: options_.descriptor_size; // the random bit selection length binary descriptor
descriptor_size = divUp(descriptor_bits, 8);
descriptor_type = CV_8UC1;
}
descriptors.create((int)kpts.size(), descriptor_size, descriptor_type);
Mat desc = descriptors.getMat();
switch (options_.descriptor)
{
case AKAZE::DESCRIPTOR_KAZE_UPRIGHT: // Upright descriptors, not invariant to rotation
{
parallel_for_(Range(0, (int)kpts.size()), MSURF_Upright_Descriptor_64_Invoker(kpts, desc, evolution_));
}
break;
case AKAZE::DESCRIPTOR_KAZE:
{
parallel_for_(Range(0, (int)kpts.size()), MSURF_Descriptor_64_Invoker(kpts, desc, evolution_));
}
break;
case AKAZE::DESCRIPTOR_MLDB_UPRIGHT: // Upright descriptors, not invariant to rotation
{
if (options_.descriptor_size == 0)
parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_));
else
parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_));
}
break;
case AKAZE::DESCRIPTOR_MLDB:
{
if (options_.descriptor_size == 0)
parallel_for_(Range(0, (int)kpts.size()), MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_));
else
parallel_for_(Range(0, (int)kpts.size()), MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_));
}
break;
}
}
/* ************************************************************************* */
/**
* @brief This function samples the derivative responses Lx and Ly for the points
* within the radius of 6*scale from (x0, y0), then multiply 2D Gaussian weight
* @param Lx Horizontal derivative
* @param Ly Vertical derivative
* @param x0 X-coordinate of the center point
* @param y0 Y-coordinate of the center point
* @param scale The sampling step
* @param resX Output array of the weighted horizontal derivative responses
* @param resY Output array of the weighted vertical derivative responses
*/
static inline
void Sample_Derivative_Response_Radius6(const Mat &Lx, const Mat &Ly,
const int x0, const int y0, const int scale,
float *resX, float *resY)
{
/* ************************************************************************* */
/// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right
static const float gauss25[7][7] =
{
{ 0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f },
{ 0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f },
{ 0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f },
{ 0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f },
{ 0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f },
{ 0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f },
{ 0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f }
};
static const struct gtable
{
float weight[109];
int xidx[109];
int yidx[109];
explicit gtable(void)
{
// Generate the weight and indices by one-time initialization
int k = 0;
for (int i = -6; i <= 6; ++i) {
for (int j = -6; j <= 6; ++j) {
if (i*i + j*j < 36) {
CV_Assert(k < 109);
weight[k] = gauss25[abs(i)][abs(j)];
yidx[k] = i;
xidx[k] = j;
++k;
}
}
}
}
} g;
CV_Assert(x0 - 6 * scale >= 0 && x0 + 6 * scale < Lx.cols);
CV_Assert(y0 - 6 * scale >= 0 && y0 + 6 * scale < Lx.rows);
for (int i = 0; i < 109; i++)
{
int y = y0 + g.yidx[i] * scale;
int x = x0 + g.xidx[i] * scale;
float w = g.weight[i];
resX[i] = w * Lx.at<float>(y, x);
resY[i] = w * Ly.at<float>(y, x);
}
}
/**
* @brief This function sorts a[] by quantized float values
* @param a[] Input floating point array to sort
* @param n The length of a[]
* @param quantum The interval to convert a[i]'s float values to integers
* @param nkeys a[i] < nkeys * quantum
* @param idx[] Output array of the indices: a[idx[i]] forms a sorted array
* @param cum[] Output array of the starting indices of quantized floats
* @note The values of a[] in [k*quantum, (k + 1)*quantum) is labeled by
* the integer k, which is calculated by floor(a[i]/quantum). After sorting,
* the values from a[idx[cum[k]]] to a[idx[cum[k+1]-1]] are all labeled by k.
* This sorting is unstable to reduce the memory access.
*/
static inline
void quantized_counting_sort(const float a[], const int n,
const float quantum, const int nkeys,
int idx[/*n*/], int cum[/*nkeys + 1*/])
{
memset(cum, 0, sizeof(cum[0]) * (nkeys + 1));
// Count up the quantized values
for (int i = 0; i < n; i++)
{
int b = (int)(a[i] / quantum);
if (b < 0 || b >= nkeys)
b = 0;
cum[b]++;
}
// Compute the inclusive prefix sum i.e. the end indices; cum[nkeys] is the total
for (int i = 1; i <= nkeys; i++)
{
cum[i] += cum[i - 1];
}
CV_Assert(cum[nkeys] == n);
// Generate the sorted indices; cum[] becomes the exclusive prefix sum i.e. the start indices of keys
for (int i = 0; i < n; i++)
{
int b = (int)(a[i] / quantum);
if (b < 0 || b >= nkeys)
b = 0;
idx[--cum[b]] = i;
}
}
/**
* @brief This function computes the main orientation for a given keypoint
* @param kpt Input keypoint
* @note The orientation is computed using a similar approach as described in the
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006
*/
static inline
void Compute_Main_Orientation(KeyPoint& kpt, const Pyramid& evolution)
{
// get the right evolution level for this keypoint
const MEvolution& e = evolution[kpt.class_id];
// Get the information from the keypoint
int scale = cvRound(0.5f * kpt.size / e.octave_ratio);
int x0 = cvRound(kpt.pt.x / e.octave_ratio);
int y0 = cvRound(kpt.pt.y / e.octave_ratio);
// Sample derivatives responses for the points within radius of 6*scale
const int ang_size = 109;
float resX[ang_size], resY[ang_size];
Sample_Derivative_Response_Radius6(e.Lx, e.Ly, x0, y0, scale, resX, resY);
// Compute the angle of each gradient vector
float Ang[ang_size];
hal::fastAtan2(resY, resX, Ang, ang_size, false);
// Sort by the angles; angles are labeled by slices of 0.15 radian
const int slices = 42;
const float ang_step = (float)(2.0 * CV_PI / slices);
int slice[slices + 1];
int sorted_idx[ang_size];
quantized_counting_sort(Ang, ang_size, ang_step, slices, sorted_idx, slice);
// Find the main angle by sliding a window of 7-slice size(=PI/3) around the keypoint
const int win = 7;
float maxX = 0.0f, maxY = 0.0f;
for (int i = slice[0]; i < slice[win]; i++) {
const int idx = sorted_idx[i];
maxX += resX[idx];
maxY += resY[idx];
}
float maxNorm = maxX * maxX + maxY * maxY;
for (int sn = 1; sn <= slices - win; sn++) {
if (slice[sn] == slice[sn - 1] && slice[sn + win] == slice[sn + win - 1])
continue; // The contents of the window didn't change; don't repeat the computation
float sumX = 0.0f, sumY = 0.0f;
for (int i = slice[sn]; i < slice[sn + win]; i++) {
const int idx = sorted_idx[i];
sumX += resX[idx];
sumY += resY[idx];
}
float norm = sumX * sumX + sumY * sumY;
if (norm > maxNorm)
maxNorm = norm, maxX = sumX, maxY = sumY; // Found bigger one; update
}
for (int sn = slices - win + 1; sn < slices; sn++) {
int remain = sn + win - slices;
if (slice[sn] == slice[sn - 1] && slice[remain] == slice[remain - 1])
continue;
float sumX = 0.0f, sumY = 0.0f;
for (int i = slice[sn]; i < slice[slices]; i++) {
const int idx = sorted_idx[i];
sumX += resX[idx];
sumY += resY[idx];
}
for (int i = slice[0]; i < slice[remain]; i++) {
const int idx = sorted_idx[i];
sumX += resX[idx];
sumY += resY[idx];
}
float norm = sumX * sumX + sumY * sumY;
if (norm > maxNorm)
maxNorm = norm, maxX = sumX, maxY = sumY;
}
// Store the final result
kpt.angle = fastAtan2(maxY, maxX);
}
class ComputeKeypointOrientation : public ParallelLoopBody
{
public:
ComputeKeypointOrientation(std::vector<KeyPoint>& kpts,
const Pyramid& evolution)
: keypoints_(&kpts)
, evolution_(&evolution)
{
}
void operator() (const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
Compute_Main_Orientation((*keypoints_)[i], *evolution_);
}
}
private:
std::vector<KeyPoint>* keypoints_;
const Pyramid* evolution_;
};
/**
* @brief This method computes the main orientation for a given keypoints
* @param kpts Input keypoints
*/
void AKAZEFeatures::Compute_Keypoints_Orientation(std::vector<KeyPoint>& kpts) const
{
CV_INSTRUMENT_REGION();
parallel_for_(Range(0, (int)kpts.size()), ComputeKeypointOrientation(kpts, evolution_));
}
/* ************************************************************************* */
/**
* @brief This method computes the upright descriptor (not rotation invariant) of
* the provided keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
* ECCV 2008
*/
void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float *desc, int desc_size) const {
const int dsize = 64;
CV_Assert(desc_size == dsize);
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
float sample_x = 0.0, sample_y = 0.0;
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0;
int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
int scale = 0;
// Subregion centers for the 4x4 gaussian weighting
float cx = -0.5f, cy = 0.5f;
const Pyramid& evolution = *evolution_;
// Set the descriptor size and the sample and pattern sizes
sample_step = 5;
pattern_size = 12;
// Get the information from the keypoint
ratio = (float)(1 << kpt.octave);
scale = cvRound(0.5f*kpt.size / ratio);
const int level = kpt.class_id;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
yf = kpt.pt.y / ratio;
xf = kpt.pt.x / ratio;
i = -8;
// Calculate descriptor for this interest point
// Area of size 24 s x 24 s
while (i < pattern_size) {
j = -8;
i = i - 4;
cx += 1.0f;
cy = -0.5f;
while (j < pattern_size) {
dx = dy = mdx = mdy = 0.0;
cy += 1.0f;
j = j - 4;
ky = i + sample_step;
kx = j + sample_step;
ys = yf + (ky*scale);
xs = xf + (kx*scale);
for (int k = i; k < i + 9; k++) {
for (int l = j; l < j + 9; l++) {
sample_y = k*scale + yf;
sample_x = l*scale + xf;
//Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale);
y1 = cvFloor(sample_y);
x1 = cvFloor(sample_x);
y2 = y1 + 1;
x2 = x1 + 1;
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows)
continue; // FIXIT Boundaries
fx = sample_x - x1;
fy = sample_y - y1;
res1 = Lx.at<float>(y1, x1);
res2 = Lx.at<float>(y1, x2);
res3 = Lx.at<float>(y2, x1);
res4 = Lx.at<float>(y2, x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = Ly.at<float>(y1, x1);
res2 = Ly.at<float>(y1, x2);
res3 = Ly.at<float>(y2, x1);
res4 = Ly.at<float>(y2, x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
rx = gauss_s1*rx;
ry = gauss_s1*ry;
// Sum the derivatives to the cumulative descriptor
dx += rx;
dy += ry;
mdx += fabs(rx);
mdy += fabs(ry);
}
}
// Add the values to the descriptor vector
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
desc[dcount++] = dx*gauss_s2;
desc[dcount++] = dy*gauss_s2;
desc[dcount++] = mdx*gauss_s2;
desc[dcount++] = mdy*gauss_s2;
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
j += 9;
}
i += 9;
}
CV_Assert(dcount == desc_size);
// convert to unit vector
len = sqrt(len);
const float len_inv = 1.0f / len;
for (i = 0; i < dsize; i++) {
desc[i] *= len_inv;
}
}
/* ************************************************************************* */
/**
* @brief This method computes the descriptor of the provided keypoint given the
* main orientation of the keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
* ECCV 2008
*/
void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, float *desc, int desc_size) const {
const int dsize = 64;
CV_Assert(desc_size == dsize);
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0;
float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0;
int kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
int scale = 0;
// Subregion centers for the 4x4 gaussian weighting
float cx = -0.5f, cy = 0.5f;
const Pyramid& evolution = *evolution_;
// Set the descriptor size and the sample and pattern sizes
sample_step = 5;
pattern_size = 12;
// Get the information from the keypoint
ratio = (float)(1 << kpt.octave);
scale = cvRound(0.5f*kpt.size / ratio);
angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
const int level = kpt.class_id;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
yf = kpt.pt.y / ratio;
xf = kpt.pt.x / ratio;
co = cos(angle);
si = sin(angle);
i = -8;
// Calculate descriptor for this interest point
// Area of size 24 s x 24 s
while (i < pattern_size) {
j = -8;
i = i - 4;
cx += 1.0f;
cy = -0.5f;
while (j < pattern_size) {
dx = dy = mdx = mdy = 0.0;
cy += 1.0f;
j = j - 4;
ky = i + sample_step;
kx = j + sample_step;
xs = xf + (-kx*scale*si + ky*scale*co);
ys = yf + (kx*scale*co + ky*scale*si);
for (int k = i; k < i + 9; ++k) {
for (int l = j; l < j + 9; ++l) {
// Get coords of sample point on the rotated axis
sample_y = yf + (l*scale*co + k*scale*si);
sample_x = xf + (-l*scale*si + k*scale*co);
// Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
y1 = cvFloor(sample_y);
x1 = cvFloor(sample_x);
y2 = y1 + 1;
x2 = x1 + 1;
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows)
continue; // FIXIT Boundaries
fx = sample_x - x1;
fy = sample_y - y1;
res1 = Lx.at<float>(y1, x1);
res2 = Lx.at<float>(y1, x2);
res3 = Lx.at<float>(y2, x1);
res4 = Lx.at<float>(y2, x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = Ly.at<float>(y1, x1);
res2 = Ly.at<float>(y1, x2);
res3 = Ly.at<float>(y2, x1);
res4 = Ly.at<float>(y2, x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
// Get the x and y derivatives on the rotated axis
rry = gauss_s1*(rx*co + ry*si);
rrx = gauss_s1*(-rx*si + ry*co);
// Sum the derivatives to the cumulative descriptor
dx += rrx;
dy += rry;
mdx += fabs(rrx);
mdy += fabs(rry);
}
}
// Add the values to the descriptor vector
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
desc[dcount++] = dx*gauss_s2;
desc[dcount++] = dy*gauss_s2;
desc[dcount++] = mdx*gauss_s2;
desc[dcount++] = mdy*gauss_s2;
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
j += 9;
}
i += 9;
}
CV_Assert(dcount == desc_size);
// convert to unit vector
len = sqrt(len);
const float len_inv = 1.0f / len;
for (i = 0; i < dsize; i++) {
desc[i] *= len_inv;
}
}
/* ************************************************************************* */
/**
* @brief This method computes the rupright descriptor (not rotation invariant) of
* the provided keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
*/
void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc, int desc_size) const {
const AKAZEOptions & options = *options_;
const Pyramid& evolution = *evolution_;
// Buffer for the M-LDB descriptor
const int max_channels = 3;
CV_Assert(options.descriptor_channels <= max_channels);
float values[16*max_channels];
// Get the information from the keypoint
const float ratio = (float)(1 << kpt.octave);
const int scale = cvRound(0.5f*kpt.size / ratio);
const int level = kpt.class_id;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
const Mat Lt = evolution[level].Lt;
const float yf = kpt.pt.y / ratio;
const float xf = kpt.pt.x / ratio;
// For 2x2 grid, 3x3 grid and 4x4 grid
const int pattern_size = options_->descriptor_pattern_size;
CV_Assert((pattern_size & 1) == 0);
const int sample_step[3] = {
pattern_size,
divUp(pattern_size * 2, 3),
divUp(pattern_size, 2)
};
memset(desc, 0, desc_size);
// For the three grids
int dcount1 = 0;
for (int z = 0; z < 3; z++) {
int dcount2 = 0;
const int step = sample_step[z];
for (int i = -pattern_size; i < pattern_size; i += step) {
for (int j = -pattern_size; j < pattern_size; j += step) {
float di = 0.0, dx = 0.0, dy = 0.0;
int nsamples = 0;
for (int k = 0; k < step; k++) {
for (int l = 0; l < step; l++) {
// Get the coordinates of the sample point
const float sample_y = yf + (l+j)*scale;
const float sample_x = xf + (k+i)*scale;
const int y1 = cvRound(sample_y);
const int x1 = cvRound(sample_x);
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols)
continue; // Boundaries
const float ri = Lt.at<float>(y1, x1);
const float rx = Lx.at<float>(y1, x1);
const float ry = Ly.at<float>(y1, x1);
di += ri;
dx += rx;
dy += ry;
nsamples++;
}
}
if (nsamples > 0)
{
const float nsamples_inv = 1.0f / nsamples;
di *= nsamples_inv;
dx *= nsamples_inv;
dy *= nsamples_inv;
}
float *val = &values[dcount2*max_channels];
*(val) = di;
*(val+1) = dx;
*(val+2) = dy;
dcount2++;
}
}
// Do binary comparison
const int num = (z + 2) * (z + 2);
for (int i = 0; i < num; i++) {
for (int j = i + 1; j < num; j++) {
const float * valI = &values[i*max_channels];
const float * valJ = &values[j*max_channels];
for (int k = 0; k < 3; ++k) {
if (*(valI + k) > *(valJ + k)) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
}
}
}
} // for (int z = 0; z < 3; z++)
CV_Assert(dcount1 <= desc_size*8);
CV_Assert(divUp(dcount1, 8) == desc_size);
}
void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_step, const int level,
float xf, float yf, float co, float si, float scale) const
{
const Pyramid& evolution = *evolution_;
int pattern_size = options_->descriptor_pattern_size;
int chan = options_->descriptor_channels;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
const Mat Lt = evolution[level].Lt;
const Size size = Lt.size();
CV_Assert(size == Lx.size());
CV_Assert(size == Ly.size());
int valpos = 0;
for (int i = -pattern_size; i < pattern_size; i += sample_step) {
for (int j = -pattern_size; j < pattern_size; j += sample_step) {
float di = 0.0f, dx = 0.0f, dy = 0.0f;
int nsamples = 0;
for (int k = i; k < i + sample_step; k++) {
for (int l = j; l < j + sample_step; l++) {
float sample_y = yf + (l*co * scale + k*si*scale);
float sample_x = xf + (-l*si * scale + k*co*scale);
int y1 = cvRound(sample_y);
int x1 = cvRound(sample_x);
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols)
continue; // Boundaries
float ri = Lt.at<float>(y1, x1);
di += ri;
if(chan > 1) {
float rx = Lx.at<float>(y1, x1);
float ry = Ly.at<float>(y1, x1);
if (chan == 2) {
dx += sqrtf(rx*rx + ry*ry);
}
else {
float rry = rx*co + ry*si;
float rrx = -rx*si + ry*co;
dx += rrx;
dy += rry;
}
}
nsamples++;
}
}
if (nsamples > 0)
{
const float nsamples_inv = 1.0f / nsamples;
di *= nsamples_inv;
dx *= nsamples_inv;
dy *= nsamples_inv;
}
values[valpos] = di;
if (chan > 1) {
values[valpos + 1] = dx;
}
if (chan > 2) {
values[valpos + 2] = dy;
}
valpos += chan;
}
}
}
void MLDB_Full_Descriptor_Invoker::MLDB_Binary_Comparisons(float* values, unsigned char* desc,
int count, int& dpos) const {
int chan = options_->descriptor_channels;
int* ivalues = (int*) values;
for(int i = 0; i < count * chan; i++) {
ivalues[i] = CV_TOGGLE_FLT(ivalues[i]);
}
for(int pos = 0; pos < chan; pos++) {
for (int i = 0; i < count; i++) {
int ival = ivalues[chan * i + pos];
for (int j = i + 1; j < count; j++) {
if (ival > ivalues[chan * j + pos]) {
desc[dpos >> 3] |= (1 << (dpos & 7));
}
dpos++;
}
}
}
}
/* ************************************************************************* */
/**
* @brief This method computes the descriptor of the provided keypoint given the
* main orientation of the keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
*/
void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc, int desc_size) const {
const int max_channels = 3;
CV_Assert(options_->descriptor_channels <= max_channels);
const int pattern_size = options_->descriptor_pattern_size;
float values[16*max_channels];
CV_Assert((pattern_size & 1) == 0);
//const double size_mult[3] = {1, 2.0/3.0, 1.0/2.0};
const int sample_step[3] = { // static_cast<int>(ceil(pattern_size * size_mult[lvl]))
pattern_size,
divUp(pattern_size * 2, 3),
divUp(pattern_size, 2)
};
float ratio = (float)(1 << kpt.octave);
float scale = (float)cvRound(0.5f*kpt.size / ratio);
float xf = kpt.pt.x / ratio;
float yf = kpt.pt.y / ratio;
float angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
float co = cos(angle);
float si = sin(angle);
memset(desc, 0, desc_size);
int dpos = 0;
for(int lvl = 0; lvl < 3; lvl++)
{
int val_count = (lvl + 2) * (lvl + 2);
MLDB_Fill_Values(values, sample_step[lvl], kpt.class_id, xf, yf, co, si, scale);
MLDB_Binary_Comparisons(values, desc, val_count, dpos);
}
CV_Assert(dpos == 486);
CV_Assert(divUp(dpos, 8) == desc_size);
}
/* ************************************************************************* */
/**
* @brief This method computes the M-LDB descriptor of the provided keypoint given the
* main orientation of the keypoint. The descriptor is computed based on a subset of
* the bits of the whole descriptor
* @param kpt Input keypoint
* @param desc Descriptor vector
*/
void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc, int desc_size) const {
float rx = 0.f, ry = 0.f;
float sample_x = 0.f, sample_y = 0.f;
const AKAZEOptions & options = *options_;
const Pyramid& evolution = *evolution_;
// Get the information from the keypoint
float ratio = (float)(1 << kpt.octave);
int scale = cvRound(0.5f*kpt.size / ratio);
float angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
const int level = kpt.class_id;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
const Mat Lt = evolution[level].Lt;
float yf = kpt.pt.y / ratio;
float xf = kpt.pt.x / ratio;
float co = cos(angle);
float si = sin(angle);
// Allocate memory for the matrix of values
// Buffer for the M-LDB descriptor
const int max_channels = 3;
const int channels = options.descriptor_channels;
CV_Assert(channels <= max_channels);
float values[(4 + 9 + 16)*max_channels] = { 0 };
// Sample everything, but only do the comparisons
const int pattern_size = options.descriptor_pattern_size;
CV_Assert((pattern_size & 1) == 0);
const int sample_steps[3] = {
pattern_size,
divUp(pattern_size * 2, 3),
divUp(pattern_size, 2)
};
for (int i = 0; i < descriptorSamples_.rows; i++) {
const int *coords = descriptorSamples_.ptr<int>(i);
CV_Assert(coords[0] >= 0 && coords[0] < 3);
const int sample_step = sample_steps[coords[0]];
float di = 0.f, dx = 0.f, dy = 0.f;
for (int k = coords[1]; k < coords[1] + sample_step; k++) {
for (int l = coords[2]; l < coords[2] + sample_step; l++) {
// Get the coordinates of the sample point
sample_y = yf + (l*scale*co + k*scale*si);
sample_x = xf + (-l*scale*si + k*scale*co);
const int y1 = cvRound(sample_y);
const int x1 = cvRound(sample_x);
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows)
continue; // Boundaries
di += Lt.at<float>(y1, x1);
if (options.descriptor_channels > 1) {
rx = Lx.at<float>(y1, x1);
ry = Ly.at<float>(y1, x1);
if (options.descriptor_channels == 2) {
dx += sqrtf(rx*rx + ry*ry);
}
else if (options.descriptor_channels == 3) {
// Get the x and y derivatives on the rotated axis
dx += rx*co + ry*si;
dy += -rx*si + ry*co;
}
}
}
}
float* pValues = &values[channels * i];
pValues[0] = di;
if (channels == 2) {
pValues[1] = dx;
}
else if (channels == 3) {
pValues[1] = dx;
pValues[2] = dy;
}
}
// Do the comparisons
const int *comps = descriptorBits_.ptr<int>(0);
CV_Assert(divUp(descriptorBits_.rows, 8) == desc_size);
memset(desc, 0, desc_size);
for (int i = 0; i<descriptorBits_.rows; i++) {
if (values[comps[2 * i]] > values[comps[2 * i + 1]]) {
desc[i / 8] |= (1 << (i % 8));
}
}
}
/* ************************************************************************* */
/**
* @brief This method computes the upright (not rotation invariant) M-LDB descriptor
* of the provided keypoint given the main orientation of the keypoint.
* The descriptor is computed based on a subset of the bits of the whole descriptor
* @param kpt Input keypoint
* @param desc Descriptor vector
*/
void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc, int desc_size) const {
float di = 0.0f, dx = 0.0f, dy = 0.0f;
float rx = 0.0f, ry = 0.0f;
float sample_x = 0.0f, sample_y = 0.0f;
int x1 = 0, y1 = 0;
const AKAZEOptions & options = *options_;
const Pyramid& evolution = *evolution_;
// Get the information from the keypoint
float ratio = (float)(1 << kpt.octave);
int scale = cvRound(0.5f*kpt.size / ratio);
const int level = kpt.class_id;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
const Mat Lt = evolution[level].Lt;
float yf = kpt.pt.y / ratio;
float xf = kpt.pt.x / ratio;
// Allocate memory for the matrix of values
const int max_channels = 3;
const int channels = options.descriptor_channels;
CV_Assert(channels <= max_channels);
float values[(4 + 9 + 16)*max_channels] = { 0 };
const int pattern_size = options.descriptor_pattern_size;
CV_Assert((pattern_size & 1) == 0);
const int sample_steps[3] = {
pattern_size,
divUp(pattern_size * 2, 3),
divUp(pattern_size, 2)
};
for (int i = 0; i < descriptorSamples_.rows; i++) {
const int *coords = descriptorSamples_.ptr<int>(i);
CV_Assert(coords[0] >= 0 && coords[0] < 3);
int sample_step = sample_steps[coords[0]];
di = 0.0f, dx = 0.0f, dy = 0.0f;
for (int k = coords[1]; k < coords[1] + sample_step; k++) {
for (int l = coords[2]; l < coords[2] + sample_step; l++) {
// Get the coordinates of the sample point
sample_y = yf + l*scale;
sample_x = xf + k*scale;
y1 = cvRound(sample_y);
x1 = cvRound(sample_x);
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows)
continue; // Boundaries
di += Lt.at<float>(y1, x1);
if (options.descriptor_channels > 1) {
rx = Lx.at<float>(y1, x1);
ry = Ly.at<float>(y1, x1);
if (options.descriptor_channels == 2) {
dx += sqrtf(rx*rx + ry*ry);
}
else if (options.descriptor_channels == 3) {
dx += rx;
dy += ry;
}
}
}
}
float* pValues = &values[channels * i];
pValues[0] = di;
if (options.descriptor_channels == 2) {
pValues[1] = dx;
}
else if (options.descriptor_channels == 3) {
pValues[1] = dx;
pValues[2] = dy;
}
}
// Do the comparisons
const int *comps = descriptorBits_.ptr<int>(0);
CV_Assert(divUp(descriptorBits_.rows, 8) == desc_size);
memset(desc, 0, desc_size);
for (int i = 0; i<descriptorBits_.rows; i++) {
if (values[comps[2 * i]] > values[comps[2 * i + 1]]) {
desc[i / 8] |= (1 << (i % 8));
}
}
}
/* ************************************************************************* */
/**
* @brief This function computes a (quasi-random) list of bits to be taken
* from the full descriptor. To speed the extraction, the function creates
* a list of the samples that are involved in generating at least a bit (sampleList)
* and a list of the comparisons between those samples (comparisons)
* @param sampleList
* @param comparisons The matrix with the binary comparisons
* @param nbits The number of bits of the descriptor
* @param pattern_size The pattern size for the binary descriptor
* @param nchannels Number of channels to consider in the descriptor (1-3)
* @note The function keeps the 18 bits (3-channels by 6 comparisons) of the
* coarser grid, since it provides the most robust estimations
*/
void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits,
int pattern_size, int nchannels) {
int ssz = 0;
for (int i = 0; i < 3; i++) {
int gz = (i + 2)*(i + 2);
ssz += gz*(gz - 1) / 2;
}
ssz *= nchannels;
CV_Assert(ssz == 162*nchannels);
CV_Assert(nbits <= ssz && "Descriptor size can't be bigger than full descriptor (486 = 162*3 - 3 channels)");
// Since the full descriptor is usually under 10k elements, we pick
// the selection from the full matrix. We take as many samples per
// pick as the number of channels. For every pick, we
// take the two samples involved and put them in the sampling list
Mat_<int> fullM(ssz / nchannels, 5);
for (int i = 0, c = 0; i < 3; i++) {
int gdiv = i + 2; //grid divisions, per row
int gsz = gdiv*gdiv;
int psz = divUp(2*pattern_size, gdiv);
for (int j = 0; j < gsz; j++) {
for (int k = j + 1; k < gsz; k++, c++) {
fullM(c, 0) = i;
fullM(c, 1) = psz*(j % gdiv) - pattern_size;
fullM(c, 2) = psz*(j / gdiv) - pattern_size;
fullM(c, 3) = psz*(k % gdiv) - pattern_size;
fullM(c, 4) = psz*(k / gdiv) - pattern_size;
}
}
}
RNG rng(1024);
const int npicks = divUp(nbits, nchannels);
Mat_<int> comps = Mat_<int>(nchannels * npicks, 2);
comps = 1000;
// Select some samples. A sample includes all channels
int count = 0;
Mat_<int> samples(29, 3);
Mat_<int> fullcopy = fullM.clone();
samples = -1;
for (int i = 0; i < npicks; i++) {
int k = rng(fullM.rows - i);
if (i < 6) {
// Force use of the coarser grid values and comparisons
k = i;
}
bool n = true;
for (int j = 0; j < count; j++) {
if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 1) && samples(j, 2) == fullcopy(k, 2)) {
n = false;
comps(i*nchannels, 0) = nchannels*j;
comps(i*nchannels + 1, 0) = nchannels*j + 1;
comps(i*nchannels + 2, 0) = nchannels*j + 2;
break;
}
}
if (n) {
samples(count, 0) = fullcopy(k, 0);
samples(count, 1) = fullcopy(k, 1);
samples(count, 2) = fullcopy(k, 2);
comps(i*nchannels, 0) = nchannels*count;
comps(i*nchannels + 1, 0) = nchannels*count + 1;
comps(i*nchannels + 2, 0) = nchannels*count + 2;
count++;
}
n = true;
for (int j = 0; j < count; j++) {
if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 3) && samples(j, 2) == fullcopy(k, 4)) {
n = false;
comps(i*nchannels, 1) = nchannels*j;
comps(i*nchannels + 1, 1) = nchannels*j + 1;
comps(i*nchannels + 2, 1) = nchannels*j + 2;
break;
}
}
if (n) {
samples(count, 0) = fullcopy(k, 0);
samples(count, 1) = fullcopy(k, 3);
samples(count, 2) = fullcopy(k, 4);
comps(i*nchannels, 1) = nchannels*count;
comps(i*nchannels + 1, 1) = nchannels*count + 1;
comps(i*nchannels + 2, 1) = nchannels*count + 2;
count++;
}
Mat tmp = fullcopy.row(k);
fullcopy.row(fullcopy.rows - i - 1).copyTo(tmp);
}
sampleList = samples.rowRange(0, count).clone();
comparisons = comps.rowRange(0, nbits).clone();
}
}