mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-14 18:50:49 +08:00
1935 lines
57 KiB
C++
1935 lines
57 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// This file is not standalone.
|
|
// It is included with these active namespaces:
|
|
//namespace opencv_test { namespace hal { namespace intrinXXX {
|
|
//CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
|
|
|
void test_hal_intrin_uint8();
|
|
void test_hal_intrin_int8();
|
|
void test_hal_intrin_uint16();
|
|
void test_hal_intrin_int16();
|
|
void test_hal_intrin_uint32();
|
|
void test_hal_intrin_int32();
|
|
void test_hal_intrin_uint64();
|
|
void test_hal_intrin_int64();
|
|
void test_hal_intrin_float32();
|
|
void test_hal_intrin_float64();
|
|
|
|
void test_hal_intrin_float16();
|
|
|
|
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
|
|
|
template <typename R> struct Data;
|
|
template <int N> struct initializer;
|
|
|
|
template <> struct initializer<64>
|
|
{
|
|
template <typename R> static R init(const Data<R> & d)
|
|
{
|
|
return R(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15],
|
|
d[16], d[17], d[18], d[19], d[20], d[21], d[22], d[23], d[24], d[25], d[26], d[27], d[28], d[29], d[30], d[31],
|
|
d[32], d[33], d[34], d[35], d[36], d[37], d[38], d[39], d[40], d[41], d[42], d[43], d[44], d[45], d[46], d[47],
|
|
d[48], d[49], d[50], d[51], d[52], d[53], d[54], d[55], d[56], d[57], d[58], d[59], d[60], d[61], d[62], d[63]);
|
|
}
|
|
};
|
|
|
|
template <> struct initializer<32>
|
|
{
|
|
template <typename R> static R init(const Data<R> & d)
|
|
{
|
|
return R(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15],
|
|
d[16], d[17], d[18], d[19], d[20], d[21], d[22], d[23], d[24], d[25], d[26], d[27], d[28], d[29], d[30], d[31]);
|
|
}
|
|
};
|
|
|
|
template <> struct initializer<16>
|
|
{
|
|
template <typename R> static R init(const Data<R> & d)
|
|
{
|
|
return R(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
|
|
}
|
|
};
|
|
|
|
template <> struct initializer<8>
|
|
{
|
|
template <typename R> static R init(const Data<R> & d)
|
|
{
|
|
return R(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7]);
|
|
}
|
|
};
|
|
|
|
template <> struct initializer<4>
|
|
{
|
|
template <typename R> static R init(const Data<R> & d)
|
|
{
|
|
return R(d[0], d[1], d[2], d[3]);
|
|
}
|
|
};
|
|
|
|
template <> struct initializer<2>
|
|
{
|
|
template <typename R> static R init(const Data<R> & d)
|
|
{
|
|
return R(d[0], d[1]);
|
|
}
|
|
};
|
|
|
|
//==================================================================================================
|
|
|
|
template <typename R> struct Data
|
|
{
|
|
typedef typename R::lane_type LaneType;
|
|
typedef typename V_TypeTraits<LaneType>::int_type int_type;
|
|
|
|
Data()
|
|
{
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
d[i] = (LaneType)(i + 1);
|
|
}
|
|
Data(LaneType val)
|
|
{
|
|
fill(val);
|
|
}
|
|
Data(const R & r)
|
|
{
|
|
*this = r;
|
|
}
|
|
operator R ()
|
|
{
|
|
return initializer<R::nlanes>().init(*this);
|
|
}
|
|
Data<R> & operator=(const R & r)
|
|
{
|
|
v_store(d, r);
|
|
return *this;
|
|
}
|
|
template <typename T> Data<R> & operator*=(T m)
|
|
{
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
d[i] *= (LaneType)m;
|
|
return *this;
|
|
}
|
|
template <typename T> Data<R> & operator+=(T m)
|
|
{
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
d[i] += (LaneType)m;
|
|
return *this;
|
|
}
|
|
void fill(LaneType val, int s, int c = R::nlanes)
|
|
{
|
|
for (int i = s; i < c; ++i)
|
|
d[i] = val;
|
|
}
|
|
void fill(LaneType val)
|
|
{
|
|
fill(val, 0);
|
|
}
|
|
void reverse()
|
|
{
|
|
for (int i = 0; i < R::nlanes / 2; ++i)
|
|
std::swap(d[i], d[R::nlanes - i - 1]);
|
|
}
|
|
const LaneType & operator[](int i) const
|
|
{
|
|
#if 0 // TODO: strange bug - AVX2 tests are failed with this
|
|
CV_CheckGE(i, 0, ""); CV_CheckLT(i, (int)R::nlanes, "");
|
|
#else
|
|
CV_Assert(i >= 0 && i < R::nlanes);
|
|
#endif
|
|
return d[i];
|
|
}
|
|
LaneType & operator[](int i)
|
|
{
|
|
CV_CheckGE(i, 0, ""); CV_CheckLT(i, (int)R::nlanes, "");
|
|
return d[i];
|
|
}
|
|
int_type as_int(int i) const
|
|
{
|
|
CV_CheckGE(i, 0, ""); CV_CheckLT(i, (int)R::nlanes, "");
|
|
union
|
|
{
|
|
LaneType l;
|
|
int_type i;
|
|
} v;
|
|
v.l = d[i];
|
|
return v.i;
|
|
}
|
|
const LaneType * mid() const
|
|
{
|
|
return d + R::nlanes / 2;
|
|
}
|
|
LaneType * mid()
|
|
{
|
|
return d + R::nlanes / 2;
|
|
}
|
|
LaneType sum(int s, int c)
|
|
{
|
|
LaneType res = 0;
|
|
for (int i = s; i < s + c; ++i)
|
|
res += d[i];
|
|
return res;
|
|
}
|
|
LaneType sum()
|
|
{
|
|
return sum(0, R::nlanes);
|
|
}
|
|
bool operator==(const Data<R> & other) const
|
|
{
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
if (d[i] != other.d[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
void clear()
|
|
{
|
|
fill(0);
|
|
}
|
|
bool isZero() const
|
|
{
|
|
return isValue(0);
|
|
}
|
|
bool isValue(uchar val) const
|
|
{
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
if (d[i] != val)
|
|
return false;
|
|
return true;
|
|
}
|
|
LaneType d[R::nlanes];
|
|
};
|
|
|
|
template<typename R> struct AlignedData
|
|
{
|
|
Data<R> CV_DECL_ALIGNED(CV_SIMD_WIDTH) a; // aligned
|
|
char dummy;
|
|
Data<R> u; // unaligned
|
|
};
|
|
|
|
template <typename R> std::ostream & operator<<(std::ostream & out, const Data<R> & d)
|
|
{
|
|
out << "{ ";
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
// out << std::hex << +V_TypeTraits<typename R::lane_type>::reinterpret_int(d.d[i]);
|
|
out << +d.d[i];
|
|
if (i + 1 < R::nlanes)
|
|
out << ", ";
|
|
}
|
|
out << " }";
|
|
return out;
|
|
}
|
|
|
|
template<typename T> static inline void EXPECT_COMPARE_EQ_(const T a, const T b)
|
|
{
|
|
EXPECT_EQ(a, b);
|
|
}
|
|
template<> inline void EXPECT_COMPARE_EQ_<float>(const float a, const float b)
|
|
{
|
|
EXPECT_FLOAT_EQ( a, b );
|
|
}
|
|
|
|
template<> inline void EXPECT_COMPARE_EQ_<double>(const double a, const double b)
|
|
{
|
|
EXPECT_DOUBLE_EQ( a, b );
|
|
}
|
|
|
|
// pack functions do not do saturation when converting from 64-bit types
|
|
template<typename T, typename W>
|
|
inline T pack_saturate_cast(W a) { return saturate_cast<T>(a); }
|
|
template<>
|
|
inline int pack_saturate_cast<int, int64>(int64 a) { return static_cast<int>(a); }
|
|
template<>
|
|
inline unsigned pack_saturate_cast<unsigned, uint64>(uint64 a) { return static_cast<unsigned>(a); }
|
|
|
|
template<typename R> struct TheTest
|
|
{
|
|
typedef typename R::lane_type LaneType;
|
|
|
|
template <typename T1, typename T2>
|
|
static inline void EXPECT_COMPARE_EQ(const T1 a, const T2 b)
|
|
{
|
|
EXPECT_COMPARE_EQ_<LaneType>((LaneType)a, (LaneType)b);
|
|
}
|
|
|
|
TheTest & test_loadstore()
|
|
{
|
|
AlignedData<R> data;
|
|
AlignedData<R> out;
|
|
|
|
// check if addresses are aligned and unaligned respectively
|
|
EXPECT_EQ((size_t)0, (size_t)&data.a.d % CV_SIMD_WIDTH);
|
|
EXPECT_NE((size_t)0, (size_t)&data.u.d % CV_SIMD_WIDTH);
|
|
EXPECT_EQ((size_t)0, (size_t)&out.a.d % CV_SIMD_WIDTH);
|
|
EXPECT_NE((size_t)0, (size_t)&out.u.d % CV_SIMD_WIDTH);
|
|
|
|
// check some initialization methods
|
|
R r1 = data.a;
|
|
R r2 = vx_load(data.u.d);
|
|
R r3 = vx_load_aligned(data.a.d);
|
|
R r4(r2);
|
|
EXPECT_EQ(data.a[0], r1.get0());
|
|
EXPECT_EQ(data.u[0], r2.get0());
|
|
EXPECT_EQ(data.a[0], r3.get0());
|
|
EXPECT_EQ(data.u[0], r4.get0());
|
|
|
|
R r_low = vx_load_low((LaneType*)data.u.d);
|
|
EXPECT_EQ(data.u[0], r_low.get0());
|
|
v_store(out.u.d, r_low);
|
|
for (int i = 0; i < R::nlanes/2; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((LaneType)data.u[i], (LaneType)out.u[i]);
|
|
}
|
|
|
|
R r_low_align8byte = vx_load_low((LaneType*)((char*)data.u.d + (CV_SIMD_WIDTH / 2)));
|
|
EXPECT_EQ(data.u[R::nlanes/2], r_low_align8byte.get0());
|
|
v_store(out.u.d, r_low_align8byte);
|
|
for (int i = 0; i < R::nlanes/2; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((LaneType)data.u[i + R::nlanes/2], (LaneType)out.u[i]);
|
|
}
|
|
|
|
// check some store methods
|
|
out.u.clear();
|
|
out.a.clear();
|
|
v_store(out.u.d, r1);
|
|
v_store_aligned(out.a.d, r2);
|
|
EXPECT_EQ(data.a, out.a);
|
|
EXPECT_EQ(data.u, out.u);
|
|
|
|
// check more store methods
|
|
Data<R> d, res(0);
|
|
R r5 = d;
|
|
v_store_high(res.mid(), r5);
|
|
v_store_low(res.d, r5);
|
|
EXPECT_EQ(d, res);
|
|
|
|
// check halves load correctness
|
|
res.clear();
|
|
R r6 = vx_load_halves(d.d, d.mid());
|
|
v_store(res.d, r6);
|
|
EXPECT_EQ(d, res);
|
|
|
|
// zero, all
|
|
Data<R> resZ, resV;
|
|
resZ.fill((LaneType)0);
|
|
resV.fill((LaneType)8);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((LaneType)0, resZ[i]);
|
|
EXPECT_EQ((LaneType)8, resV[i]);
|
|
}
|
|
|
|
// reinterpret_as
|
|
v_uint8 vu8 = v_reinterpret_as_u8(r1); out.a.clear(); v_store((uchar*)out.a.d, vu8); EXPECT_EQ(data.a, out.a);
|
|
v_int8 vs8 = v_reinterpret_as_s8(r1); out.a.clear(); v_store((schar*)out.a.d, vs8); EXPECT_EQ(data.a, out.a);
|
|
v_uint16 vu16 = v_reinterpret_as_u16(r1); out.a.clear(); v_store((ushort*)out.a.d, vu16); EXPECT_EQ(data.a, out.a);
|
|
v_int16 vs16 = v_reinterpret_as_s16(r1); out.a.clear(); v_store((short*)out.a.d, vs16); EXPECT_EQ(data.a, out.a);
|
|
v_uint32 vu32 = v_reinterpret_as_u32(r1); out.a.clear(); v_store((unsigned*)out.a.d, vu32); EXPECT_EQ(data.a, out.a);
|
|
v_int32 vs32 = v_reinterpret_as_s32(r1); out.a.clear(); v_store((int*)out.a.d, vs32); EXPECT_EQ(data.a, out.a);
|
|
v_uint64 vu64 = v_reinterpret_as_u64(r1); out.a.clear(); v_store((uint64*)out.a.d, vu64); EXPECT_EQ(data.a, out.a);
|
|
v_int64 vs64 = v_reinterpret_as_s64(r1); out.a.clear(); v_store((int64*)out.a.d, vs64); EXPECT_EQ(data.a, out.a);
|
|
v_float32 vf32 = v_reinterpret_as_f32(r1); out.a.clear(); v_store((float*)out.a.d, vf32); EXPECT_EQ(data.a, out.a);
|
|
#if CV_SIMD_64F
|
|
v_float64 vf64 = v_reinterpret_as_f64(r1); out.a.clear(); v_store((double*)out.a.d, vf64); EXPECT_EQ(data.a, out.a);
|
|
#endif
|
|
|
|
#if CV_SIMD_WIDTH == 16
|
|
R setall_res1 = v_setall((LaneType)5);
|
|
R setall_res2 = v_setall<LaneType>(6);
|
|
#elif CV_SIMD_WIDTH == 32
|
|
R setall_res1 = v256_setall((LaneType)5);
|
|
R setall_res2 = v256_setall<LaneType>(6);
|
|
#elif CV_SIMD_WIDTH == 64
|
|
R setall_res1 = v512_setall((LaneType)5);
|
|
R setall_res2 = v512_setall<LaneType>(6);
|
|
#else
|
|
#error "Configuration error"
|
|
#endif
|
|
#if CV_SIMD_WIDTH > 0
|
|
Data<R> setall_res1_; v_store(setall_res1_.d, setall_res1);
|
|
Data<R> setall_res2_; v_store(setall_res2_.d, setall_res2);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((LaneType)5, setall_res1_[i]);
|
|
EXPECT_EQ((LaneType)6, setall_res2_[i]);
|
|
}
|
|
#endif
|
|
|
|
R vx_setall_res1 = vx_setall((LaneType)11);
|
|
R vx_setall_res2 = vx_setall<LaneType>(12);
|
|
Data<R> vx_setall_res1_; v_store(vx_setall_res1_.d, vx_setall_res1);
|
|
Data<R> vx_setall_res2_; v_store(vx_setall_res2_.d, vx_setall_res2);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((LaneType)11, vx_setall_res1_[i]);
|
|
EXPECT_EQ((LaneType)12, vx_setall_res2_[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_interleave()
|
|
{
|
|
Data<R> data1, data2, data3, data4;
|
|
data2 += 20;
|
|
data3 += 40;
|
|
data4 += 60;
|
|
|
|
|
|
R a = data1, b = data2, c = data3;
|
|
R d = data1, e = data2, f = data3, g = data4;
|
|
|
|
LaneType buf3[R::nlanes * 3];
|
|
LaneType buf4[R::nlanes * 4];
|
|
|
|
v_store_interleave(buf3, a, b, c);
|
|
v_store_interleave(buf4, d, e, f, g);
|
|
|
|
Data<R> z(0);
|
|
a = b = c = d = e = f = g = z;
|
|
|
|
v_load_deinterleave(buf3, a, b, c);
|
|
v_load_deinterleave(buf4, d, e, f, g);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(data1, Data<R>(a));
|
|
EXPECT_EQ(data2, Data<R>(b));
|
|
EXPECT_EQ(data3, Data<R>(c));
|
|
|
|
EXPECT_EQ(data1, Data<R>(d));
|
|
EXPECT_EQ(data2, Data<R>(e));
|
|
EXPECT_EQ(data3, Data<R>(f));
|
|
EXPECT_EQ(data4, Data<R>(g));
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
// float32x4 only
|
|
TheTest & test_interleave_2channel()
|
|
{
|
|
Data<R> data1, data2;
|
|
data2 += 20;
|
|
|
|
R a = data1, b = data2;
|
|
|
|
LaneType buf2[R::nlanes * 2];
|
|
|
|
v_store_interleave(buf2, a, b);
|
|
|
|
Data<R> z(0);
|
|
a = b = z;
|
|
|
|
v_load_deinterleave(buf2, a, b);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(data1, Data<R>(a));
|
|
EXPECT_EQ(data2, Data<R>(b));
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
// v_expand and v_load_expand
|
|
TheTest & test_expand()
|
|
{
|
|
typedef typename V_RegTraits<R>::w_reg Rx2;
|
|
Data<R> dataA;
|
|
R a = dataA;
|
|
|
|
Data<Rx2> resB = vx_load_expand(dataA.d);
|
|
|
|
Rx2 c, d, e, f;
|
|
v_expand(a, c, d);
|
|
|
|
e = v_expand_low(a);
|
|
f = v_expand_high(a);
|
|
|
|
Data<Rx2> resC = c, resD = d, resE = e, resF = f;
|
|
const int n = Rx2::nlanes;
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[i], resB[i]);
|
|
EXPECT_EQ(dataA[i], resC[i]);
|
|
EXPECT_EQ(dataA[i + n], resD[i]);
|
|
EXPECT_EQ(dataA[i], resE[i]);
|
|
EXPECT_EQ(dataA[i + n], resF[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_expand_q()
|
|
{
|
|
typedef typename V_RegTraits<R>::q_reg Rx4;
|
|
Data<R> data;
|
|
Data<Rx4> out = vx_load_expand_q(data.d);
|
|
const int n = Rx4::nlanes;
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(data[i], out[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_addsub()
|
|
{
|
|
Data<R> dataA, dataB;
|
|
dataB.reverse();
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = a + b, resD = a - b;
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(saturate_cast<LaneType>(dataA[i] + dataB[i]), resC[i]);
|
|
EXPECT_EQ(saturate_cast<LaneType>(dataA[i] - dataB[i]), resD[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_arithm_wrap()
|
|
{
|
|
Data<R> dataA, dataB;
|
|
dataB.reverse();
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = v_add_wrap(a, b),
|
|
resD = v_sub_wrap(a, b),
|
|
resE = v_mul_wrap(a, b);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((LaneType)(dataA[i] + dataB[i]), resC[i]);
|
|
EXPECT_EQ((LaneType)(dataA[i] - dataB[i]), resD[i]);
|
|
EXPECT_EQ((LaneType)(dataA[i] * dataB[i]), resE[i]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_mul()
|
|
{
|
|
Data<R> dataA, dataB;
|
|
dataA[1] = static_cast<LaneType>(std::numeric_limits<LaneType>::max());
|
|
dataB.reverse();
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = a * b;
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(saturate_cast<LaneType>(dataA[i] * dataB[i]), resC[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_div()
|
|
{
|
|
Data<R> dataA, dataB;
|
|
dataB.reverse();
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = a / b;
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[i] / dataB[i], resC[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_mul_expand()
|
|
{
|
|
typedef typename V_RegTraits<R>::w_reg Rx2;
|
|
Data<R> dataA, dataB(2);
|
|
R a = dataA, b = dataB;
|
|
Rx2 c, d;
|
|
|
|
v_mul_expand(a, b, c, d);
|
|
|
|
Data<Rx2> resC = c, resD = d;
|
|
const int n = R::nlanes / 2;
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((typename Rx2::lane_type)dataA[i] * dataB[i], resC[i]);
|
|
EXPECT_EQ((typename Rx2::lane_type)dataA[i + n] * dataB[i + n], resD[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_abs()
|
|
{
|
|
typedef typename V_RegTraits<R>::u_reg Ru;
|
|
typedef typename Ru::lane_type u_type;
|
|
Data<R> dataA, dataB(10);
|
|
R a = dataA, b = dataB;
|
|
a = a - b;
|
|
|
|
Data<Ru> resC = v_abs(a);
|
|
|
|
for (int i = 0; i < Ru::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((u_type)std::abs(dataA[i] - dataB[i]), resC[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <int s>
|
|
TheTest & test_shift()
|
|
{
|
|
SCOPED_TRACE(s);
|
|
Data<R> dataA;
|
|
dataA[0] = static_cast<LaneType>(std::numeric_limits<LaneType>::max());
|
|
R a = dataA;
|
|
|
|
Data<R> resB = a << s, resC = v_shl<s>(a), resD = a >> s, resE = v_shr<s>(a);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(static_cast<LaneType>(dataA[i] << s), resB[i]);
|
|
EXPECT_EQ(static_cast<LaneType>(dataA[i] << s), resC[i]);
|
|
EXPECT_EQ(static_cast<LaneType>(dataA[i] >> s), resD[i]);
|
|
EXPECT_EQ(static_cast<LaneType>(dataA[i] >> s), resE[i]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_cmp()
|
|
{
|
|
Data<R> dataA, dataB;
|
|
dataB.reverse();
|
|
dataB += 1;
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = (a == b);
|
|
Data<R> resD = (a != b);
|
|
Data<R> resE = (a > b);
|
|
Data<R> resF = (a >= b);
|
|
Data<R> resG = (a < b);
|
|
Data<R> resH = (a <= b);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[i] == dataB[i], resC[i] != 0);
|
|
EXPECT_EQ(dataA[i] != dataB[i], resD[i] != 0);
|
|
EXPECT_EQ(dataA[i] > dataB[i], resE[i] != 0);
|
|
EXPECT_EQ(dataA[i] >= dataB[i], resF[i] != 0);
|
|
EXPECT_EQ(dataA[i] < dataB[i], resG[i] != 0);
|
|
EXPECT_EQ(dataA[i] <= dataB[i], resH[i] != 0);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_dotprod()
|
|
{
|
|
typedef typename V_RegTraits<R>::w_reg Rx2;
|
|
typedef typename Rx2::lane_type w_type;
|
|
|
|
Data<R> dataA, dataB;
|
|
dataA += std::numeric_limits<LaneType>::max() - R::nlanes;
|
|
dataB += std::numeric_limits<LaneType>::min() + R::nlanes;
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<Rx2> dataC;
|
|
dataC += std::numeric_limits<w_type>::is_signed ?
|
|
std::numeric_limits<w_type>::min() :
|
|
std::numeric_limits<w_type>::max() - R::nlanes * (dataB[0] + 1);
|
|
Rx2 c = dataC;
|
|
|
|
Data<Rx2> resD = v_dotprod(a, b),
|
|
resE = v_dotprod(a, b, c);
|
|
|
|
const int n = R::nlanes / 2;
|
|
w_type sumAB = 0, sumABC = 0, tmp_sum;
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
|
|
tmp_sum = (w_type)dataA[i*2] * (w_type)dataB[i*2] +
|
|
(w_type)dataA[i*2 + 1] * (w_type)dataB[i*2 + 1];
|
|
sumAB += tmp_sum;
|
|
EXPECT_EQ(tmp_sum, resD[i]);
|
|
|
|
tmp_sum = tmp_sum + dataC[i];
|
|
sumABC += tmp_sum;
|
|
EXPECT_EQ(tmp_sum, resE[i]);
|
|
}
|
|
|
|
w_type resF = v_reduce_sum(v_dotprod_fast(a, b)),
|
|
resG = v_reduce_sum(v_dotprod_fast(a, b, c));
|
|
EXPECT_EQ(sumAB, resF);
|
|
EXPECT_EQ(sumABC, resG);
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_dotprod_expand()
|
|
{
|
|
typedef typename V_RegTraits<R>::q_reg Rx4;
|
|
typedef typename Rx4::lane_type l4_type;
|
|
|
|
Data<R> dataA, dataB;
|
|
dataA += std::numeric_limits<LaneType>::max() - R::nlanes;
|
|
dataB += std::numeric_limits<LaneType>::min() + R::nlanes;
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<Rx4> dataC;
|
|
Rx4 c = dataC;
|
|
|
|
Data<Rx4> resD = v_dotprod_expand(a, b),
|
|
resE = v_dotprod_expand(a, b, c);
|
|
|
|
l4_type sumAB = 0, sumABC = 0, tmp_sum;
|
|
for (int i = 0; i < Rx4::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
tmp_sum = (l4_type)dataA[i*4] * (l4_type)dataB[i*4] +
|
|
(l4_type)dataA[i*4 + 1] * (l4_type)dataB[i*4 + 1] +
|
|
(l4_type)dataA[i*4 + 2] * (l4_type)dataB[i*4 + 2] +
|
|
(l4_type)dataA[i*4 + 3] * (l4_type)dataB[i*4 + 3];
|
|
sumAB += tmp_sum;
|
|
EXPECT_EQ(tmp_sum, resD[i]);
|
|
|
|
tmp_sum = tmp_sum + dataC[i];
|
|
sumABC += tmp_sum;
|
|
EXPECT_EQ(tmp_sum, resE[i]);
|
|
}
|
|
|
|
l4_type resF = v_reduce_sum(v_dotprod_expand_fast(a, b)),
|
|
resG = v_reduce_sum(v_dotprod_expand_fast(a, b, c));
|
|
EXPECT_EQ(sumAB, resF);
|
|
EXPECT_EQ(sumABC, resG);
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_dotprod_expand_f64()
|
|
{
|
|
#if CV_SIMD_64F
|
|
Data<R> dataA, dataB;
|
|
dataA += std::numeric_limits<LaneType>::max() - R::nlanes;
|
|
dataB += std::numeric_limits<LaneType>::min();
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<v_float64> dataC;
|
|
v_float64 c = dataC;
|
|
|
|
Data<v_float64> resA = v_dotprod_expand(a, a),
|
|
resB = v_dotprod_expand(b, b),
|
|
resC = v_dotprod_expand(a, b, c);
|
|
|
|
const int n = R::nlanes / 2;
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_COMPARE_EQ((double)dataA[i*2] * (double)dataA[i*2] +
|
|
(double)dataA[i*2 + 1] * (double)dataA[i*2 + 1], resA[i]);
|
|
EXPECT_COMPARE_EQ((double)dataB[i*2] * (double)dataB[i*2] +
|
|
(double)dataB[i*2 + 1] * (double)dataB[i*2 + 1], resB[i]);
|
|
EXPECT_COMPARE_EQ((double)dataA[i*2] * (double)dataB[i*2] +
|
|
(double)dataA[i*2 + 1] * (double)dataB[i*2 + 1] + dataC[i], resC[i]);
|
|
}
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_logic()
|
|
{
|
|
Data<R> dataA, dataB(2);
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = a & b, resD = a | b, resE = a ^ b, resF = ~a;
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[i] & dataB[i], resC[i]);
|
|
EXPECT_EQ(dataA[i] | dataB[i], resD[i]);
|
|
EXPECT_EQ(dataA[i] ^ dataB[i], resE[i]);
|
|
EXPECT_EQ((LaneType)~dataA[i], resF[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_sqrt_abs()
|
|
{
|
|
Data<R> dataA, dataD;
|
|
dataD *= -1.0;
|
|
R a = dataA, d = dataD;
|
|
|
|
Data<R> resB = v_sqrt(a), resC = v_invsqrt(a), resE = v_abs(d);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_COMPARE_EQ((float)std::sqrt(dataA[i]), (float)resB[i]);
|
|
EXPECT_COMPARE_EQ((float)(1/std::sqrt(dataA[i])), (float)resC[i]);
|
|
EXPECT_COMPARE_EQ((float)abs(dataA[i]), (float)resE[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_min_max()
|
|
{
|
|
Data<R> dataA, dataB;
|
|
dataB.reverse();
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = v_min(a, b), resD = v_max(a, b);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(std::min(dataA[i], dataB[i]), resC[i]);
|
|
EXPECT_EQ(std::max(dataA[i], dataB[i]), resD[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_popcount()
|
|
{
|
|
typedef typename V_RegTraits<R>::u_reg Ru;
|
|
static unsigned popcountTable[] = {
|
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, //0x00-0x0f
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, //0x10-0x1f
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, //0x20-0x2f
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, //0x30-0x3f
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, //0x40-0x4f
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, //0x50-0x5f
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, //0x60-0x6f
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, //0x70-0x7f
|
|
1 //0x80
|
|
};
|
|
Data<R> dataA;
|
|
R a = dataA;
|
|
|
|
Data<Ru> resB = v_popcount(a);
|
|
for (int i = 0; i < Ru::nlanes; ++i)
|
|
EXPECT_EQ(popcountTable[i + 1], resB[i]);
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_absdiff()
|
|
{
|
|
typedef typename V_RegTraits<R>::u_reg Ru;
|
|
typedef typename Ru::lane_type u_type;
|
|
Data<R> dataA(std::numeric_limits<LaneType>::max()),
|
|
dataB(std::numeric_limits<LaneType>::min());
|
|
dataA[0] = (LaneType)-1;
|
|
dataB[0] = 1;
|
|
dataA[1] = 2;
|
|
dataB[1] = (LaneType)-2;
|
|
R a = dataA, b = dataB;
|
|
Data<Ru> resC = v_absdiff(a, b);
|
|
const u_type mask = std::numeric_limits<LaneType>::is_signed ? (u_type)(1 << (sizeof(u_type)*8 - 1)) : 0;
|
|
for (int i = 0; i < Ru::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
u_type uA = dataA[i] ^ mask;
|
|
u_type uB = dataB[i] ^ mask;
|
|
EXPECT_EQ(uA > uB ? uA - uB : uB - uA, resC[i]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_float_absdiff()
|
|
{
|
|
Data<R> dataA(std::numeric_limits<LaneType>::max()),
|
|
dataB(std::numeric_limits<LaneType>::min());
|
|
dataA[0] = -1;
|
|
dataB[0] = 1;
|
|
dataA[1] = 2;
|
|
dataB[1] = -2;
|
|
R a = dataA, b = dataB;
|
|
Data<R> resC = v_absdiff(a, b);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[i] > dataB[i] ? dataA[i] - dataB[i] : dataB[i] - dataA[i], resC[i]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_absdiffs()
|
|
{
|
|
Data<R> dataA(std::numeric_limits<LaneType>::max()),
|
|
dataB(std::numeric_limits<LaneType>::min());
|
|
dataA[0] = (LaneType)-1;
|
|
dataB[0] = 1;
|
|
dataA[1] = 2;
|
|
dataB[1] = (LaneType)-2;
|
|
R a = dataA, b = dataB;
|
|
Data<R> resC = v_absdiffs(a, b);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
EXPECT_EQ(saturate_cast<LaneType>(std::abs(dataA[i] - dataB[i])), resC[i]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_reduce()
|
|
{
|
|
Data<R> dataA;
|
|
int sum = 0;
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
sum += (int)(dataA[i]); // To prevent a constant overflow with int8
|
|
}
|
|
R a = dataA;
|
|
EXPECT_EQ((LaneType)1, (LaneType)v_reduce_min(a));
|
|
EXPECT_EQ((LaneType)(R::nlanes), (LaneType)v_reduce_max(a));
|
|
EXPECT_EQ((int)(sum), (int)v_reduce_sum(a));
|
|
dataA[0] += R::nlanes;
|
|
R an = dataA;
|
|
EXPECT_EQ((LaneType)2, (LaneType)v_reduce_min(an));
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_reduce_sad()
|
|
{
|
|
Data<R> dataA, dataB(R::nlanes/2);
|
|
R a = dataA;
|
|
R b = dataB;
|
|
EXPECT_EQ((unsigned)(R::nlanes*R::nlanes/4), v_reduce_sad(a, b));
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_mask()
|
|
{
|
|
typedef typename V_RegTraits<R>::int_reg int_reg;
|
|
typedef typename V_RegTraits<int_reg>::u_reg uint_reg;
|
|
typedef typename int_reg::lane_type int_type;
|
|
typedef typename uint_reg::lane_type uint_type;
|
|
|
|
Data<R> dataA, dataB(0), dataC, dataD(1), dataE(2);
|
|
dataA[1] *= (LaneType)-1;
|
|
union
|
|
{
|
|
LaneType l;
|
|
uint_type ui;
|
|
}
|
|
all1s;
|
|
all1s.ui = (uint_type)-1;
|
|
LaneType mask_one = all1s.l;
|
|
dataB[R::nlanes - 1] = mask_one;
|
|
R l = dataB;
|
|
dataB[1] = mask_one;
|
|
dataB[R::nlanes / 2] = mask_one;
|
|
dataC *= (LaneType)-1;
|
|
R a = dataA, b = dataB, c = dataC, d = dataD, e = dataE;
|
|
dataC[R::nlanes - 1] = 0;
|
|
R nl = dataC;
|
|
|
|
EXPECT_EQ(2, v_signmask(a));
|
|
#if CV_SIMD_WIDTH <= 32
|
|
EXPECT_EQ(2 | (1 << (R::nlanes / 2)) | (1 << (R::nlanes - 1)), v_signmask(b));
|
|
#endif
|
|
|
|
EXPECT_EQ(false, v_check_all(a));
|
|
EXPECT_EQ(false, v_check_all(b));
|
|
EXPECT_EQ(true, v_check_all(c));
|
|
EXPECT_EQ(false, v_check_all(nl));
|
|
|
|
EXPECT_EQ(true, v_check_any(a));
|
|
EXPECT_EQ(true, v_check_any(b));
|
|
EXPECT_EQ(true, v_check_any(c));
|
|
EXPECT_EQ(true, v_check_any(l));
|
|
R f = v_select(b, d, e);
|
|
Data<R> resF = f;
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
int_type m2 = dataB.as_int(i);
|
|
EXPECT_EQ((dataD.as_int(i) & m2) | (dataE.as_int(i) & ~m2), resF.as_int(i));
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <int s>
|
|
TheTest & test_pack()
|
|
{
|
|
SCOPED_TRACE(s);
|
|
typedef typename V_RegTraits<R>::w_reg Rx2;
|
|
typedef typename Rx2::lane_type w_type;
|
|
Data<Rx2> dataA, dataB;
|
|
dataA += std::numeric_limits<LaneType>::is_signed ? -10 : 10;
|
|
dataB *= 10;
|
|
dataB[0] = static_cast<w_type>(std::numeric_limits<LaneType>::max()) + 17; // to check saturation
|
|
Rx2 a = dataA, b = dataB;
|
|
|
|
Data<R> resC = v_pack(a, b);
|
|
Data<R> resD = v_rshr_pack<s>(a, b);
|
|
|
|
Data<R> resE(0);
|
|
v_pack_store(resE.d, b);
|
|
|
|
Data<R> resF(0);
|
|
v_rshr_pack_store<s>(resF.d, b);
|
|
|
|
const int n = Rx2::nlanes;
|
|
const w_type add = (w_type)1 << (s - 1);
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>(dataA[i]), resC[i]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>(dataB[i]), resC[i + n]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>((dataA[i] + add) >> s), resD[i]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>((dataB[i] + add) >> s), resD[i + n]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>(dataB[i]), resE[i]);
|
|
EXPECT_EQ((LaneType)0, resE[i + n]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>((dataB[i] + add) >> s), resF[i]);
|
|
EXPECT_EQ((LaneType)0, resF[i + n]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <int s>
|
|
TheTest & test_pack_u()
|
|
{
|
|
SCOPED_TRACE(s);
|
|
//typedef typename V_RegTraits<LaneType>::w_type LaneType_w;
|
|
typedef typename V_RegTraits<R>::w_reg R2;
|
|
typedef typename V_RegTraits<R2>::int_reg Ri2;
|
|
typedef typename Ri2::lane_type w_type;
|
|
|
|
Data<Ri2> dataA, dataB;
|
|
dataA += -10;
|
|
dataB *= 10;
|
|
dataB[0] = static_cast<w_type>(std::numeric_limits<LaneType>::max()) + 17; // to check saturation
|
|
Ri2 a = dataA, b = dataB;
|
|
|
|
Data<R> resC = v_pack_u(a, b);
|
|
Data<R> resD = v_rshr_pack_u<s>(a, b);
|
|
|
|
Data<R> resE(0);
|
|
v_pack_u_store(resE.d, b);
|
|
|
|
Data<R> resF(0);
|
|
v_rshr_pack_u_store<s>(resF.d, b);
|
|
|
|
const int n = Ri2::nlanes;
|
|
const w_type add = (w_type)1 << (s - 1);
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>(dataA[i]), resC[i]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>(dataB[i]), resC[i + n]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>((dataA[i] + add) >> s), resD[i]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>((dataB[i] + add) >> s), resD[i + n]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>(dataB[i]), resE[i]);
|
|
EXPECT_EQ((LaneType)0, resE[i + n]);
|
|
EXPECT_EQ(pack_saturate_cast<LaneType>((dataB[i] + add) >> s), resF[i]);
|
|
EXPECT_EQ((LaneType)0, resF[i + n]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// v_uint8 only
|
|
TheTest & test_pack_b()
|
|
{
|
|
// 16-bit
|
|
Data<R> dataA, dataB;
|
|
dataB.fill(0, R::nlanes / 2);
|
|
|
|
R a = dataA, b = dataB;
|
|
Data<R> maskA = a == b, maskB = a != b;
|
|
|
|
a = maskA; b = maskB;
|
|
Data<R> res = v_pack_b(v_reinterpret_as_u16(a), v_reinterpret_as_u16(b));
|
|
for (int i = 0; i < v_uint16::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(maskA[i * 2], res[i]);
|
|
EXPECT_EQ(maskB[i * 2], res[i + v_uint16::nlanes]);
|
|
}
|
|
|
|
// 32-bit
|
|
Data<R> dataC, dataD;
|
|
dataD.fill(0, R::nlanes / 2);
|
|
|
|
R c = dataC, d = dataD;
|
|
Data<R> maskC = c == d, maskD = c != d;
|
|
|
|
c = maskC; d = maskD;
|
|
res = v_pack_b
|
|
(
|
|
v_reinterpret_as_u32(a), v_reinterpret_as_u32(b),
|
|
v_reinterpret_as_u32(c), v_reinterpret_as_u32(d)
|
|
);
|
|
|
|
for (int i = 0; i < v_uint32::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(maskA[i * 4], res[i]);
|
|
EXPECT_EQ(maskB[i * 4], res[i + v_uint32::nlanes]);
|
|
EXPECT_EQ(maskC[i * 4], res[i + v_uint32::nlanes * 2]);
|
|
EXPECT_EQ(maskD[i * 4], res[i + v_uint32::nlanes * 3]);
|
|
}
|
|
|
|
// 64-bit
|
|
Data<R> dataE, dataF, dataG(0), dataH(0xFF);
|
|
dataF.fill(0, R::nlanes / 2);
|
|
|
|
R e = dataE, f = dataF, g = dataG, h = dataH;
|
|
Data<R> maskE = e == f, maskF = e != f;
|
|
|
|
e = maskE; f = maskF;
|
|
res = v_pack_b
|
|
(
|
|
v_reinterpret_as_u64(a), v_reinterpret_as_u64(b),
|
|
v_reinterpret_as_u64(c), v_reinterpret_as_u64(d),
|
|
v_reinterpret_as_u64(e), v_reinterpret_as_u64(f),
|
|
v_reinterpret_as_u64(g), v_reinterpret_as_u64(h)
|
|
);
|
|
|
|
for (int i = 0; i < v_uint64::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(maskA[i * 8], res[i]);
|
|
EXPECT_EQ(maskB[i * 8], res[i + v_uint64::nlanes]);
|
|
EXPECT_EQ(maskC[i * 8], res[i + v_uint64::nlanes * 2]);
|
|
EXPECT_EQ(maskD[i * 8], res[i + v_uint64::nlanes * 3]);
|
|
|
|
EXPECT_EQ(maskE[i * 8], res[i + v_uint64::nlanes * 4]);
|
|
EXPECT_EQ(maskF[i * 8], res[i + v_uint64::nlanes * 5]);
|
|
EXPECT_EQ(dataG[i * 8], res[i + v_uint64::nlanes * 6]);
|
|
EXPECT_EQ(dataH[i * 8], res[i + v_uint64::nlanes * 7]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_unpack()
|
|
{
|
|
Data<R> dataA, dataB;
|
|
dataB *= 10;
|
|
R a = dataA, b = dataB;
|
|
|
|
R c, d, e, f, lo, hi;
|
|
v_zip(a, b, c, d);
|
|
v_recombine(a, b, e, f);
|
|
lo = v_combine_low(a, b);
|
|
hi = v_combine_high(a, b);
|
|
|
|
Data<R> resC = c, resD = d, resE = e, resF = f, resLo = lo, resHi = hi;
|
|
|
|
const int n = R::nlanes/2;
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[i], resC[i*2]);
|
|
EXPECT_EQ(dataB[i], resC[i*2+1]);
|
|
EXPECT_EQ(dataA[i+n], resD[i*2]);
|
|
EXPECT_EQ(dataB[i+n], resD[i*2+1]);
|
|
|
|
EXPECT_EQ(dataA[i], resE[i]);
|
|
EXPECT_EQ(dataB[i], resE[i+n]);
|
|
EXPECT_EQ(dataA[i+n], resF[i]);
|
|
EXPECT_EQ(dataB[i+n], resF[i+n]);
|
|
|
|
EXPECT_EQ(dataA[i], resLo[i]);
|
|
EXPECT_EQ(dataB[i], resLo[i+n]);
|
|
EXPECT_EQ(dataA[i+n], resHi[i]);
|
|
EXPECT_EQ(dataB[i+n], resHi[i+n]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_reverse()
|
|
{
|
|
Data<R> dataA;
|
|
R a = dataA;
|
|
|
|
Data<R> resB = v_reverse(a);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[R::nlanes - i - 1], resB[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<int s>
|
|
TheTest & test_extract()
|
|
{
|
|
SCOPED_TRACE(s);
|
|
Data<R> dataA, dataB;
|
|
dataB *= 10;
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = v_extract<s>(a, b);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
if (i + s >= R::nlanes)
|
|
EXPECT_EQ(dataB[i - R::nlanes + s], resC[i]);
|
|
else
|
|
EXPECT_EQ(dataA[i + s], resC[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<int s>
|
|
TheTest & test_rotate()
|
|
{
|
|
SCOPED_TRACE(s);
|
|
Data<R> dataA, dataB;
|
|
dataB *= 10;
|
|
R a = dataA, b = dataB;
|
|
|
|
Data<R> resC = v_rotate_right<s>(a);
|
|
Data<R> resD = v_rotate_right<s>(a, b);
|
|
|
|
Data<R> resE = v_rotate_left<s>(a);
|
|
Data<R> resF = v_rotate_left<s>(a, b);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
if (i + s >= R::nlanes)
|
|
{
|
|
EXPECT_EQ((LaneType)0, resC[i]);
|
|
EXPECT_EQ(dataB[i - R::nlanes + s], resD[i]);
|
|
|
|
EXPECT_EQ((LaneType)0, resE[i - R::nlanes + s]);
|
|
EXPECT_EQ(dataB[i], resF[i - R::nlanes + s]);
|
|
}
|
|
else
|
|
{
|
|
EXPECT_EQ(dataA[i + s], resC[i]);
|
|
EXPECT_EQ(dataA[i + s], resD[i]);
|
|
|
|
EXPECT_EQ(dataA[i], resE[i + s]);
|
|
EXPECT_EQ(dataA[i], resF[i + s]);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<int s>
|
|
TheTest & test_extract_n()
|
|
{
|
|
SCOPED_TRACE(s);
|
|
Data<R> dataA;
|
|
LaneType test_value = (LaneType)(s + 50);
|
|
dataA[s] = test_value;
|
|
R a = dataA;
|
|
|
|
LaneType res = v_extract_n<s>(a);
|
|
EXPECT_EQ(test_value, res);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<int s>
|
|
TheTest & test_broadcast_element()
|
|
{
|
|
SCOPED_TRACE(s);
|
|
Data<R> dataA;
|
|
LaneType test_value = (LaneType)(s + 50);
|
|
dataA[s] = test_value;
|
|
R a = dataA;
|
|
|
|
Data<R> res = v_broadcast_element<s>(a);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(i);
|
|
EXPECT_EQ(test_value, res[i]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_float_math()
|
|
{
|
|
typedef typename V_RegTraits<R>::round_reg Ri;
|
|
Data<R> data1, data2, data3;
|
|
data1 *= 1.1;
|
|
data2 += 10;
|
|
R a1 = data1, a2 = data2, a3 = data3;
|
|
|
|
Data<Ri> resB = v_round(a1),
|
|
resC = v_trunc(a1),
|
|
resD = v_floor(a1),
|
|
resE = v_ceil(a1);
|
|
|
|
Data<R> resF = v_magnitude(a1, a2),
|
|
resG = v_sqr_magnitude(a1, a2),
|
|
resH = v_muladd(a1, a2, a3);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(cvRound(data1[i]), resB[i]);
|
|
EXPECT_EQ((typename Ri::lane_type)data1[i], resC[i]);
|
|
EXPECT_EQ(cvFloor(data1[i]), resD[i]);
|
|
EXPECT_EQ(cvCeil(data1[i]), resE[i]);
|
|
|
|
EXPECT_COMPARE_EQ(std::sqrt(data1[i]*data1[i] + data2[i]*data2[i]), resF[i]);
|
|
EXPECT_COMPARE_EQ(data1[i]*data1[i] + data2[i]*data2[i], resG[i]);
|
|
EXPECT_COMPARE_EQ(data1[i]*data2[i] + data3[i], resH[i]);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_float_cvt32()
|
|
{
|
|
typedef v_float32 Rt;
|
|
Data<R> dataA;
|
|
dataA *= 1.1;
|
|
R a = dataA;
|
|
Rt b = v_cvt_f32(a);
|
|
Data<Rt> resB = b;
|
|
int n = std::min<int>(Rt::nlanes, R::nlanes);
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((typename Rt::lane_type)dataA[i], resB[i]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_float_cvt64()
|
|
{
|
|
#if CV_SIMD_64F
|
|
typedef v_float64 Rt;
|
|
Data<R> dataA;
|
|
dataA *= 1.1;
|
|
R a = dataA;
|
|
Rt b = v_cvt_f64(a);
|
|
Rt c = v_cvt_f64_high(a);
|
|
Data<Rt> resB = b;
|
|
Data<Rt> resC = c;
|
|
int n = std::min<int>(Rt::nlanes, R::nlanes);
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((typename Rt::lane_type)dataA[i], resB[i]);
|
|
}
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((typename Rt::lane_type)dataA[i+n], resC[i]);
|
|
}
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_cvt64_double()
|
|
{
|
|
#if CV_SIMD_64F
|
|
Data<R> dataA(std::numeric_limits<LaneType>::max()),
|
|
dataB(std::numeric_limits<LaneType>::min());
|
|
dataB += R::nlanes;
|
|
|
|
R a = dataA, b = dataB;
|
|
v_float64 c = v_cvt_f64(a), d = v_cvt_f64(b);
|
|
|
|
Data<v_float64> resC = c;
|
|
Data<v_float64> resD = d;
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ((double)dataA[i], resC[i]);
|
|
EXPECT_EQ((double)dataB[i], resD[i]);
|
|
}
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_matmul()
|
|
{
|
|
Data<R> dataV, dataA, dataB, dataC, dataD;
|
|
dataB.reverse();
|
|
dataC += 2;
|
|
dataD *= 0.3;
|
|
R v = dataV, a = dataA, b = dataB, c = dataC, d = dataD;
|
|
|
|
Data<R> res = v_matmul(v, a, b, c, d);
|
|
for (int i = 0; i < R::nlanes; i += 4)
|
|
{
|
|
for (int j = i; j < i + 4; ++j)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d j=%d", i, j));
|
|
LaneType val = dataV[i] * dataA[j]
|
|
+ dataV[i + 1] * dataB[j]
|
|
+ dataV[i + 2] * dataC[j]
|
|
+ dataV[i + 3] * dataD[j];
|
|
EXPECT_COMPARE_EQ(val, res[j]);
|
|
}
|
|
}
|
|
|
|
Data<R> resAdd = v_matmuladd(v, a, b, c, d);
|
|
for (int i = 0; i < R::nlanes; i += 4)
|
|
{
|
|
for (int j = i; j < i + 4; ++j)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d j=%d", i, j));
|
|
LaneType val = dataV[i] * dataA[j]
|
|
+ dataV[i + 1] * dataB[j]
|
|
+ dataV[i + 2] * dataC[j]
|
|
+ dataD[j];
|
|
EXPECT_COMPARE_EQ(val, resAdd[j]);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_transpose()
|
|
{
|
|
Data<R> dataA, dataB, dataC, dataD;
|
|
dataB *= 5;
|
|
dataC *= 10;
|
|
dataD *= 15;
|
|
R a = dataA, b = dataB, c = dataC, d = dataD;
|
|
R e, f, g, h;
|
|
v_transpose4x4(a, b, c, d,
|
|
e, f, g, h);
|
|
|
|
Data<R> res[4] = {e, f, g, h};
|
|
for (int i = 0; i < R::nlanes; i += 4)
|
|
{
|
|
for (int j = 0; j < 4; ++j)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d j=%d", i, j));
|
|
EXPECT_EQ(dataA[i + j], res[j][i]);
|
|
EXPECT_EQ(dataB[i + j], res[j][i + 1]);
|
|
EXPECT_EQ(dataC[i + j], res[j][i + 2]);
|
|
EXPECT_EQ(dataD[i + j], res[j][i + 3]);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_reduce_sum4()
|
|
{
|
|
Data<R> dataA, dataB, dataC, dataD;
|
|
dataB *= 0.01f;
|
|
dataC *= 0.001f;
|
|
dataD *= 0.002f;
|
|
|
|
R a = dataA, b = dataB, c = dataC, d = dataD;
|
|
Data<R> res = v_reduce_sum4(a, b, c, d);
|
|
|
|
for (int i = 0; i < R::nlanes; i += 4)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_COMPARE_EQ(dataA.sum(i, 4), res[i]);
|
|
EXPECT_COMPARE_EQ(dataB.sum(i, 4), res[i + 1]);
|
|
EXPECT_COMPARE_EQ(dataC.sum(i, 4), res[i + 2]);
|
|
EXPECT_COMPARE_EQ(dataD.sum(i, 4), res[i + 3]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
TheTest & test_loadstore_fp16_f32()
|
|
{
|
|
printf("test_loadstore_fp16_f32 ...\n");
|
|
AlignedData<v_uint16> data; data.a.clear();
|
|
data.a.d[0] = 0x3c00; // 1.0
|
|
data.a.d[R::nlanes - 1] = (unsigned short)0xc000; // -2.0
|
|
AlignedData<v_float32> data_f32; data_f32.a.clear();
|
|
AlignedData<v_uint16> out;
|
|
|
|
R r1 = vx_load_expand((const cv::float16_t*)data.a.d);
|
|
R r2(r1);
|
|
EXPECT_EQ(1.0f, r1.get0());
|
|
vx_store(data_f32.a.d, r2);
|
|
EXPECT_EQ(-2.0f, data_f32.a.d[R::nlanes - 1]);
|
|
|
|
out.a.clear();
|
|
v_pack_store((cv::float16_t*)out.a.d, r2);
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
EXPECT_EQ(data.a[i], out.a[i]) << "i=" << i;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
#if 0
|
|
TheTest & test_loadstore_fp16()
|
|
{
|
|
printf("test_loadstore_fp16 ...\n");
|
|
AlignedData<R> data;
|
|
AlignedData<R> out;
|
|
|
|
// check if addresses are aligned and unaligned respectively
|
|
EXPECT_EQ((size_t)0, (size_t)&data.a.d % CV_SIMD_WIDTH);
|
|
EXPECT_NE((size_t)0, (size_t)&data.u.d % CV_SIMD_WIDTH);
|
|
EXPECT_EQ((size_t)0, (size_t)&out.a.d % CV_SIMD_WIDTH);
|
|
EXPECT_NE((size_t)0, (size_t)&out.u.d % CV_SIMD_WIDTH);
|
|
|
|
// check some initialization methods
|
|
R r1 = data.u;
|
|
R r2 = vx_load_expand((const float16_t*)data.a.d);
|
|
R r3(r2);
|
|
EXPECT_EQ(data.u[0], r1.get0());
|
|
EXPECT_EQ(data.a[0], r2.get0());
|
|
EXPECT_EQ(data.a[0], r3.get0());
|
|
|
|
// check some store methods
|
|
out.a.clear();
|
|
v_store(out.a.d, r1);
|
|
EXPECT_EQ(data.a, out.a);
|
|
|
|
return *this;
|
|
}
|
|
TheTest & test_float_cvt_fp16()
|
|
{
|
|
printf("test_float_cvt_fp16 ...\n");
|
|
AlignedData<v_float32> data;
|
|
|
|
// check conversion
|
|
v_float32 r1 = vx_load(data.a.d);
|
|
v_float16 r2 = v_cvt_f16(r1, vx_setzero_f32());
|
|
v_float32 r3 = v_cvt_f32(r2);
|
|
EXPECT_EQ(0x3c00, r2.get0());
|
|
EXPECT_EQ(r3.get0(), r1.get0());
|
|
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
#if CV_SIMD_64F
|
|
TheTest & test_cmp64()
|
|
{
|
|
Data<R> dataA, dataB;
|
|
R a = dataA, b = dataB;
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
dataA[i] = dataB[i];
|
|
}
|
|
dataA[0]++;
|
|
|
|
a = dataA, b = dataB;
|
|
|
|
Data<R> resC = (a == b);
|
|
Data<R> resD = (a != b);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[i] == dataB[i], resC[i] != 0);
|
|
EXPECT_EQ(dataA[i] != dataB[i], resD[i] != 0);
|
|
}
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
dataA[i] = dataB[i] = (LaneType)-1;
|
|
}
|
|
|
|
a = dataA, b = dataB;
|
|
|
|
resC = (a == b);
|
|
resD = (a != b);
|
|
|
|
for (int i = 0; i < R::nlanes; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%d", i));
|
|
EXPECT_EQ(dataA[i] == dataB[i], resC[i] != 0);
|
|
EXPECT_EQ(dataA[i] != dataB[i], resD[i] != 0);
|
|
}
|
|
return *this;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
#if 1
|
|
#define DUMP_ENTRY(type) printf("SIMD%d: %s\n", 8*(int)sizeof(v_uint8), CV__TRACE_FUNCTION);
|
|
#endif
|
|
|
|
//============= 8-bit integer =====================================================================
|
|
|
|
void test_hal_intrin_uint8()
|
|
{
|
|
DUMP_ENTRY(v_uint8);
|
|
typedef v_uint8 R;
|
|
TheTest<v_uint8>()
|
|
.test_loadstore()
|
|
.test_interleave()
|
|
.test_expand()
|
|
.test_expand_q()
|
|
.test_addsub()
|
|
.test_arithm_wrap()
|
|
.test_mul()
|
|
.test_mul_expand()
|
|
.test_cmp()
|
|
.test_logic()
|
|
.test_dotprod_expand()
|
|
.test_min_max()
|
|
.test_absdiff()
|
|
.test_reduce()
|
|
.test_reduce_sad()
|
|
.test_mask()
|
|
.test_popcount()
|
|
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
|
|
.test_pack_u<1>().test_pack_u<2>().test_pack_u<3>().test_pack_u<8>()
|
|
.test_pack_b()
|
|
.test_unpack()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
|
|
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
//.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
#if CV_SIMD_WIDTH == 32
|
|
.test_pack<9>().test_pack<10>().test_pack<13>().test_pack<15>()
|
|
.test_pack_u<9>().test_pack_u<10>().test_pack_u<13>().test_pack_u<15>()
|
|
.test_extract<16>().test_extract<17>().test_extract<23>().test_extract<31>()
|
|
.test_rotate<16>().test_rotate<17>().test_rotate<23>().test_rotate<31>()
|
|
#endif
|
|
;
|
|
}
|
|
|
|
void test_hal_intrin_int8()
|
|
{
|
|
DUMP_ENTRY(v_int8);
|
|
typedef v_int8 R;
|
|
TheTest<v_int8>()
|
|
.test_loadstore()
|
|
.test_interleave()
|
|
.test_expand()
|
|
.test_expand_q()
|
|
.test_addsub()
|
|
.test_arithm_wrap()
|
|
.test_mul()
|
|
.test_mul_expand()
|
|
.test_cmp()
|
|
.test_logic()
|
|
.test_dotprod_expand()
|
|
.test_min_max()
|
|
.test_absdiff()
|
|
.test_absdiffs()
|
|
.test_abs()
|
|
.test_reduce()
|
|
.test_reduce_sad()
|
|
.test_mask()
|
|
.test_popcount()
|
|
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
|
|
.test_unpack()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
|
|
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
//.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
;
|
|
}
|
|
|
|
//============= 16-bit integer =====================================================================
|
|
|
|
void test_hal_intrin_uint16()
|
|
{
|
|
DUMP_ENTRY(v_uint16);
|
|
typedef v_uint16 R;
|
|
TheTest<v_uint16>()
|
|
.test_loadstore()
|
|
.test_interleave()
|
|
.test_expand()
|
|
.test_addsub()
|
|
.test_arithm_wrap()
|
|
.test_mul()
|
|
.test_mul_expand()
|
|
.test_cmp()
|
|
.test_shift<1>()
|
|
.test_shift<8>()
|
|
.test_dotprod_expand()
|
|
.test_logic()
|
|
.test_min_max()
|
|
.test_absdiff()
|
|
.test_reduce()
|
|
.test_reduce_sad()
|
|
.test_mask()
|
|
.test_popcount()
|
|
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
|
|
.test_pack_u<1>().test_pack_u<2>().test_pack_u<7>().test_pack_u<16>()
|
|
.test_unpack()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
|
|
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
//.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
;
|
|
}
|
|
|
|
void test_hal_intrin_int16()
|
|
{
|
|
DUMP_ENTRY(v_int16);
|
|
typedef v_int16 R;
|
|
TheTest<v_int16>()
|
|
.test_loadstore()
|
|
.test_interleave()
|
|
.test_expand()
|
|
.test_addsub()
|
|
.test_arithm_wrap()
|
|
.test_mul()
|
|
.test_mul_expand()
|
|
.test_cmp()
|
|
.test_shift<1>()
|
|
.test_shift<8>()
|
|
.test_dotprod()
|
|
.test_dotprod_expand()
|
|
.test_logic()
|
|
.test_min_max()
|
|
.test_absdiff()
|
|
.test_absdiffs()
|
|
.test_abs()
|
|
.test_reduce()
|
|
.test_reduce_sad()
|
|
.test_mask()
|
|
.test_popcount()
|
|
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
|
|
.test_unpack()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
|
|
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
//.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
;
|
|
}
|
|
|
|
//============= 32-bit integer =====================================================================
|
|
|
|
void test_hal_intrin_uint32()
|
|
{
|
|
DUMP_ENTRY(v_uint32);
|
|
typedef v_uint32 R;
|
|
TheTest<v_uint32>()
|
|
.test_loadstore()
|
|
.test_interleave()
|
|
.test_expand()
|
|
.test_addsub()
|
|
.test_mul()
|
|
.test_mul_expand()
|
|
.test_cmp()
|
|
.test_shift<1>()
|
|
.test_shift<8>()
|
|
.test_logic()
|
|
.test_min_max()
|
|
.test_absdiff()
|
|
.test_reduce()
|
|
.test_reduce_sad()
|
|
.test_mask()
|
|
.test_popcount()
|
|
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
|
|
.test_unpack()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
|
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
.test_transpose()
|
|
;
|
|
}
|
|
|
|
void test_hal_intrin_int32()
|
|
{
|
|
DUMP_ENTRY(v_int32);
|
|
typedef v_int32 R;
|
|
TheTest<v_int32>()
|
|
.test_loadstore()
|
|
.test_interleave()
|
|
.test_expand()
|
|
.test_addsub()
|
|
.test_mul()
|
|
.test_abs()
|
|
.test_cmp()
|
|
.test_popcount()
|
|
.test_shift<1>().test_shift<8>()
|
|
.test_dotprod()
|
|
.test_dotprod_expand_f64()
|
|
.test_logic()
|
|
.test_min_max()
|
|
.test_absdiff()
|
|
.test_reduce()
|
|
.test_reduce_sad()
|
|
.test_mask()
|
|
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
|
|
.test_unpack()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
|
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
.test_float_cvt32()
|
|
.test_float_cvt64()
|
|
.test_transpose()
|
|
;
|
|
}
|
|
|
|
//============= 64-bit integer =====================================================================
|
|
|
|
void test_hal_intrin_uint64()
|
|
{
|
|
DUMP_ENTRY(v_uint64);
|
|
typedef v_uint64 R;
|
|
TheTest<v_uint64>()
|
|
.test_loadstore()
|
|
.test_addsub()
|
|
#if CV_SIMD_64F
|
|
.test_cmp64()
|
|
#endif
|
|
.test_shift<1>().test_shift<8>()
|
|
.test_logic()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>()
|
|
.test_rotate<0>().test_rotate<1>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
//.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
;
|
|
}
|
|
|
|
void test_hal_intrin_int64()
|
|
{
|
|
DUMP_ENTRY(v_int64);
|
|
typedef v_int64 R;
|
|
TheTest<v_int64>()
|
|
.test_loadstore()
|
|
.test_addsub()
|
|
#if CV_SIMD_64F
|
|
.test_cmp64()
|
|
#endif
|
|
.test_shift<1>().test_shift<8>()
|
|
.test_logic()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>()
|
|
.test_rotate<0>().test_rotate<1>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
//.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
.test_cvt64_double()
|
|
;
|
|
}
|
|
|
|
//============= Floating point =====================================================================
|
|
void test_hal_intrin_float32()
|
|
{
|
|
DUMP_ENTRY(v_float32);
|
|
typedef v_float32 R;
|
|
TheTest<v_float32>()
|
|
.test_loadstore()
|
|
.test_interleave()
|
|
.test_interleave_2channel()
|
|
.test_addsub()
|
|
.test_mul()
|
|
.test_div()
|
|
.test_cmp()
|
|
.test_sqrt_abs()
|
|
.test_min_max()
|
|
.test_float_absdiff()
|
|
.test_reduce()
|
|
.test_reduce_sad()
|
|
.test_mask()
|
|
.test_unpack()
|
|
.test_float_math()
|
|
.test_float_cvt64()
|
|
.test_matmul()
|
|
.test_transpose()
|
|
.test_reduce_sum4()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
|
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
#if CV_SIMD_WIDTH == 32
|
|
.test_extract<4>().test_extract<5>().test_extract<6>().test_extract<7>()
|
|
.test_rotate<4>().test_rotate<5>().test_rotate<6>().test_rotate<7>()
|
|
#endif
|
|
;
|
|
}
|
|
|
|
void test_hal_intrin_float64()
|
|
{
|
|
DUMP_ENTRY(v_float64);
|
|
#if CV_SIMD_64F
|
|
typedef v_float64 R;
|
|
TheTest<v_float64>()
|
|
.test_loadstore()
|
|
.test_addsub()
|
|
.test_mul()
|
|
.test_div()
|
|
.test_cmp()
|
|
.test_sqrt_abs()
|
|
.test_min_max()
|
|
.test_float_absdiff()
|
|
.test_mask()
|
|
.test_unpack()
|
|
.test_float_math()
|
|
.test_float_cvt32()
|
|
.test_reverse()
|
|
.test_extract<0>().test_extract<1>()
|
|
.test_rotate<0>().test_rotate<1>()
|
|
.test_extract_n<0>().test_extract_n<1>().test_extract_n<R::nlanes - 1>()
|
|
//.test_broadcast_element<0>().test_broadcast_element<1>().test_broadcast_element<R::nlanes - 1>()
|
|
#if CV_SIMD_WIDTH == 32
|
|
.test_extract<2>().test_extract<3>()
|
|
.test_rotate<2>().test_rotate<3>()
|
|
#endif
|
|
;
|
|
|
|
#endif
|
|
}
|
|
|
|
#if CV_FP16
|
|
void test_hal_intrin_float16()
|
|
{
|
|
DUMP_ENTRY(v_float16);
|
|
#if CV_FP16
|
|
TheTest<v_float32>()
|
|
.test_loadstore_fp16_f32()
|
|
#endif
|
|
#if CV_SIMD_FP16
|
|
.test_loadstore_fp16()
|
|
.test_float_cvt_fp16()
|
|
#endif
|
|
;
|
|
}
|
|
#endif
|
|
|
|
/*#if defined(CV_CPU_DISPATCH_MODE_FP16) && CV_CPU_DISPATCH_MODE == FP16
|
|
void test_hal_intrin_float16()
|
|
{
|
|
TheTest<v_float16>()
|
|
.test_loadstore_fp16()
|
|
.test_float_cvt_fp16()
|
|
;
|
|
}
|
|
#endif*/
|
|
|
|
#endif //CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
|
|
|
//CV_CPU_OPTIMIZATION_NAMESPACE_END
|
|
//}}} // namespace
|