mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-15 03:01:04 +08:00
initial commit
This commit is contained in:
73
samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py
Executable file
73
samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py
Executable file
@ -0,0 +1,73 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
SZ=20
|
||||
bin_n = 16 # Number of bins
|
||||
|
||||
|
||||
affine_flags = cv.WARP_INVERSE_MAP|cv.INTER_LINEAR
|
||||
|
||||
## [deskew]
|
||||
def deskew(img):
|
||||
m = cv.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
|
||||
return img
|
||||
## [deskew]
|
||||
|
||||
## [hog]
|
||||
def hog(img):
|
||||
gx = cv.Sobel(img, cv.CV_32F, 1, 0)
|
||||
gy = cv.Sobel(img, cv.CV_32F, 0, 1)
|
||||
mag, ang = cv.cartToPolar(gx, gy)
|
||||
bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16)
|
||||
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||
hist = np.hstack(hists) # hist is a 64 bit vector
|
||||
return hist
|
||||
## [hog]
|
||||
|
||||
img = cv.imread('digits.png',0)
|
||||
if img is None:
|
||||
raise Exception("we need the digits.png image from samples/data here !")
|
||||
|
||||
|
||||
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]
|
||||
|
||||
# First half is trainData, remaining is testData
|
||||
train_cells = [ i[:50] for i in cells ]
|
||||
test_cells = [ i[50:] for i in cells]
|
||||
|
||||
###### Now training ########################
|
||||
|
||||
deskewed = [list(map(deskew,row)) for row in train_cells]
|
||||
hogdata = [list(map(hog,row)) for row in deskewed]
|
||||
trainData = np.float32(hogdata).reshape(-1,64)
|
||||
responses = np.repeat(np.arange(10),250)[:,np.newaxis]
|
||||
|
||||
svm = cv.ml.SVM_create()
|
||||
svm.setKernel(cv.ml.SVM_LINEAR)
|
||||
svm.setType(cv.ml.SVM_C_SVC)
|
||||
svm.setC(2.67)
|
||||
svm.setGamma(5.383)
|
||||
|
||||
svm.train(trainData, cv.ml.ROW_SAMPLE, responses)
|
||||
svm.save('svm_data.dat')
|
||||
|
||||
###### Now testing ########################
|
||||
|
||||
deskewed = [list(map(deskew,row)) for row in test_cells]
|
||||
hogdata = [list(map(hog,row)) for row in deskewed]
|
||||
testData = np.float32(hogdata).reshape(-1,bin_n*4)
|
||||
result = svm.predict(testData)[1]
|
||||
|
||||
####### Check Accuracy ########################
|
||||
mask = result==responses
|
||||
correct = np.count_nonzero(mask)
|
||||
print(correct*100.0/result.size)
|
Reference in New Issue
Block a user