initial commit

This commit is contained in:
Joachim
2020-03-23 11:48:41 +01:00
commit fce6dc35b4
6434 changed files with 2823345 additions and 0 deletions

View File

@ -0,0 +1,36 @@
from __future__ import print_function
import cv2 as cv
alpha = 0.5
try:
raw_input # Python 2
except NameError:
raw_input = input # Python 3
print(''' Simple Linear Blender
-----------------------
* Enter alpha [0.0-1.0]: ''')
input_alpha = float(raw_input().strip())
if 0 <= alpha <= 1:
alpha = input_alpha
# [load]
src1 = cv.imread(cv.samples.findFile('LinuxLogo.jpg'))
src2 = cv.imread(cv.samples.findFile('WindowsLogo.jpg'))
# [load]
if src1 is None:
print("Error loading src1")
exit(-1)
elif src2 is None:
print("Error loading src2")
exit(-1)
# [blend_images]
beta = (1.0 - alpha)
dst = cv.addWeighted(src1, alpha, src2, beta, 0.0)
# [blend_images]
# [display]
cv.imshow('dst', dst)
cv.waitKey(0)
# [display]
cv.destroyAllWindows()

View File

@ -0,0 +1,80 @@
from __future__ import print_function
import sys
import cv2 as cv
import numpy as np
def print_help():
print('''
This program demonstrated the use of the discrete Fourier transform (DFT).
The dft of an image is taken and it's power spectrum is displayed.
Usage:
discrete_fourier_transform.py [image_name -- default lena.jpg]''')
def main(argv):
print_help()
filename = argv[0] if len(argv) > 0 else 'lena.jpg'
I = cv.imread(cv.samples.findFile(filename), cv.IMREAD_GRAYSCALE)
if I is None:
print('Error opening image')
return -1
## [expand]
rows, cols = I.shape
m = cv.getOptimalDFTSize( rows )
n = cv.getOptimalDFTSize( cols )
padded = cv.copyMakeBorder(I, 0, m - rows, 0, n - cols, cv.BORDER_CONSTANT, value=[0, 0, 0])
## [expand]
## [complex_and_real]
planes = [np.float32(padded), np.zeros(padded.shape, np.float32)]
complexI = cv.merge(planes) # Add to the expanded another plane with zeros
## [complex_and_real]
## [dft]
cv.dft(complexI, complexI) # this way the result may fit in the source matrix
## [dft]
# compute the magnitude and switch to logarithmic scale
# = > log(1 + sqrt(Re(DFT(I)) ^ 2 + Im(DFT(I)) ^ 2))
## [magnitude]
cv.split(complexI, planes) # planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
cv.magnitude(planes[0], planes[1], planes[0])# planes[0] = magnitude
magI = planes[0]
## [magnitude]
## [log]
matOfOnes = np.ones(magI.shape, dtype=magI.dtype)
cv.add(matOfOnes, magI, magI) # switch to logarithmic scale
cv.log(magI, magI)
## [log]
## [crop_rearrange]
magI_rows, magI_cols = magI.shape
# crop the spectrum, if it has an odd number of rows or columns
magI = magI[0:(magI_rows & -2), 0:(magI_cols & -2)]
cx = int(magI_rows/2)
cy = int(magI_cols/2)
q0 = magI[0:cx, 0:cy] # Top-Left - Create a ROI per quadrant
q1 = magI[cx:cx+cx, 0:cy] # Top-Right
q2 = magI[0:cx, cy:cy+cy] # Bottom-Left
q3 = magI[cx:cx+cx, cy:cy+cy] # Bottom-Right
tmp = np.copy(q0) # swap quadrants (Top-Left with Bottom-Right)
magI[0:cx, 0:cy] = q3
magI[cx:cx + cx, cy:cy + cy] = tmp
tmp = np.copy(q1) # swap quadrant (Top-Right with Bottom-Left)
magI[cx:cx + cx, 0:cy] = q2
magI[0:cx, cy:cy + cy] = tmp
## [crop_rearrange]
## [normalize]
cv.normalize(magI, magI, 0, 1, cv.NORM_MINMAX) # Transform the matrix with float values into a
## viewable image form(float between values 0 and 1).
## [normalize]
cv.imshow("Input Image" , I ) # Show the result
cv.imshow("spectrum magnitude", magI)
cv.waitKey()
if __name__ == "__main__":
main(sys.argv[1:])

View File

@ -0,0 +1,156 @@
from __future__ import print_function
import numpy as np
import cv2 as cv
import sys
def help(filename):
print (
'''
{0} shows the usage of the OpenCV serialization functionality. \n\n
usage:\n
python3 {0} outputfile.yml.gz\n\n
The output file may be either in XML, YAML or JSON. You can even compress it\n
by specifying this in its extension like xml.gz yaml.gz etc... With\n
FileStorage you can serialize objects in OpenCV.\n\n
For example: - create a class and have it serialized\n
- use it to read and write matrices.\n
'''.format(filename)
)
class MyData:
A = 97
X = np.pi
name = 'mydata1234'
def __repr__(self):
s = '{ name = ' + self.name + ', X = ' + str(self.X)
s = s + ', A = ' + str(self.A) + '}'
return s
## [inside]
def write(self, fs):
fs.write('MyData','{')
fs.write('A', self.A)
fs.write('X', self.X)
fs.write('name', self.name)
fs.write('MyData','}')
def read(self, node):
if (not node.empty()):
self.A = int(node.getNode('A').real())
self.X = node.getNode('X').real()
self.name = node.getNode('name').string()
else:
self.A = self.X = 0
self.name = ''
## [inside]
def main(argv):
if len(argv) != 2:
help(argv[0])
exit(1)
# write
## [iomati]
R = np.eye(3,3)
T = np.zeros((3,1))
## [iomati]
## [customIOi]
m = MyData()
## [customIOi]
filename = argv[1]
## [open]
s = cv.FileStorage(filename, cv.FileStorage_WRITE)
# or:
# s = cv.FileStorage()
# s.open(filename, cv.FileStorage_WRITE)
## [open]
## [writeNum]
s.write('iterationNr', 100)
## [writeNum]
## [writeStr]
s.write('strings', '[')
s.write('image1.jpg','Awesomeness')
s.write('../data/baboon.jpg',']')
## [writeStr]
## [writeMap]
s.write ('Mapping', '{')
s.write ('One', 1)
s.write ('Two', 2)
s.write ('Mapping', '}')
## [writeMap]
## [iomatw]
s.write ('R_MAT', R)
s.write ('T_MAT', T)
## [iomatw]
## [customIOw]
m.write(s)
## [customIOw]
## [close]
s.release()
## [close]
print ('Write Done.')
# read
print ('\nReading: ')
s = cv.FileStorage()
s.open(filename, cv.FileStorage_READ)
## [readNum]
n = s.getNode('iterationNr')
itNr = int(n.real())
## [readNum]
print (itNr)
if (not s.isOpened()):
print ('Failed to open ', filename, file=sys.stderr)
help(argv[0])
exit(1)
## [readStr]
n = s.getNode('strings')
if (not n.isSeq()):
print ('strings is not a sequence! FAIL', file=sys.stderr)
exit(1)
for i in range(n.size()):
print (n.at(i).string())
## [readStr]
## [readMap]
n = s.getNode('Mapping')
print ('Two',int(n.getNode('Two').real()),'; ')
print ('One',int(n.getNode('One').real()),'\n')
## [readMap]
## [iomat]
R = s.getNode('R_MAT').mat()
T = s.getNode('T_MAT').mat()
## [iomat]
## [customIO]
m.read(s.getNode('MyData'))
## [customIO]
print ('\nR =',R)
print ('T =',T,'\n')
print ('MyData =','\n',m,'\n')
## [nonexist]
print ('Attempt to read NonExisting (should initialize the data structure',
'with its default).')
m.read(s.getNode('NonExisting'))
print ('\nNonExisting =','\n',m)
## [nonexist]
print ('\nTip: Open up',filename,'with a text editor to see the serialized data.')
if __name__ == '__main__':
main(sys.argv)

View File

@ -0,0 +1,100 @@
from __future__ import print_function
import sys
import time
import numpy as np
import cv2 as cv
## [basic_method]
def is_grayscale(my_image):
return len(my_image.shape) < 3
def saturated(sum_value):
if sum_value > 255:
sum_value = 255
if sum_value < 0:
sum_value = 0
return sum_value
def sharpen(my_image):
if is_grayscale(my_image):
height, width = my_image.shape
else:
my_image = cv.cvtColor(my_image, cv.CV_8U)
height, width, n_channels = my_image.shape
result = np.zeros(my_image.shape, my_image.dtype)
## [basic_method_loop]
for j in range(1, height - 1):
for i in range(1, width - 1):
if is_grayscale(my_image):
sum_value = 5 * my_image[j, i] - my_image[j + 1, i] - my_image[j - 1, i] \
- my_image[j, i + 1] - my_image[j, i - 1]
result[j, i] = saturated(sum_value)
else:
for k in range(0, n_channels):
sum_value = 5 * my_image[j, i, k] - my_image[j + 1, i, k] \
- my_image[j - 1, i, k] - my_image[j, i + 1, k]\
- my_image[j, i - 1, k]
result[j, i, k] = saturated(sum_value)
## [basic_method_loop]
return result
## [basic_method]
def main(argv):
filename = 'lena.jpg'
img_codec = cv.IMREAD_COLOR
if argv:
filename = sys.argv[1]
if len(argv) >= 2 and sys.argv[2] == "G":
img_codec = cv.IMREAD_GRAYSCALE
src = cv.imread(cv.samples.findFile(filename), img_codec)
if src is None:
print("Can't open image [" + filename + "]")
print("Usage:")
print("mat_mask_operations.py [image_path -- default lena.jpg] [G -- grayscale]")
return -1
cv.namedWindow("Input", cv.WINDOW_AUTOSIZE)
cv.namedWindow("Output", cv.WINDOW_AUTOSIZE)
cv.imshow("Input", src)
t = round(time.time())
dst0 = sharpen(src)
t = (time.time() - t)
print("Hand written function time passed in seconds: %s" % t)
cv.imshow("Output", dst0)
cv.waitKey()
t = time.time()
## [kern]
kernel = np.array([[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]], np.float32) # kernel should be floating point type
## [kern]
## [filter2D]
dst1 = cv.filter2D(src, -1, kernel)
# ddepth = -1, means destination image has depth same as input image
## [filter2D]
t = (time.time() - t)
print("Built-in filter2D time passed in seconds: %s" % t)
cv.imshow("Output", dst1)
cv.waitKey(0)
cv.destroyAllWindows()
return 0
if __name__ == "__main__":
main(sys.argv[1:])

View File

@ -0,0 +1,92 @@
from __future__ import division
import cv2 as cv
import numpy as np
# Snippet code for Operations with images tutorial (not intended to be run)
def load():
# Input/Output
filename = 'img.jpg'
## [Load an image from a file]
img = cv.imread(filename)
## [Load an image from a file]
## [Load an image from a file in grayscale]
img = cv.imread(filename, cv.IMREAD_GRAYSCALE)
## [Load an image from a file in grayscale]
## [Save image]
cv.imwrite(filename, img)
## [Save image]
def access_pixel():
# Accessing pixel intensity values
img = np.empty((4,4,3), np.uint8)
y = 0
x = 0
## [Pixel access 1]
_intensity = img[y,x]
## [Pixel access 1]
## [Pixel access 3]
_blue = img[y,x,0]
_green = img[y,x,1]
_red = img[y,x,2]
## [Pixel access 3]
## [Pixel access 5]
img[y,x] = 128
## [Pixel access 5]
def reference_counting():
# Memory management and reference counting
## [Reference counting 2]
img = cv.imread('image.jpg')
_img1 = np.copy(img)
## [Reference counting 2]
## [Reference counting 3]
img = cv.imread('image.jpg')
_sobelx = cv.Sobel(img, cv.CV_32F, 1, 0)
## [Reference counting 3]
def primitive_operations():
img = np.empty((4,4,3), np.uint8)
## [Set image to black]
img[:] = 0
## [Set image to black]
## [Select ROI]
_smallImg = img[10:110,10:110]
## [Select ROI]
## [BGR to Gray]
img = cv.imread('image.jpg')
_grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
## [BGR to Gray]
src = np.ones((4,4), np.uint8)
## [Convert to CV_32F]
_dst = src.astype(np.float32)
## [Convert to CV_32F]
def visualize_images():
## [imshow 1]
img = cv.imread('image.jpg')
cv.namedWindow('image', cv.WINDOW_AUTOSIZE)
cv.imshow('image', img)
cv.waitKey()
## [imshow 1]
## [imshow 2]
img = cv.imread('image.jpg')
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
sobelx = cv.Sobel(grey, cv.CV_32F, 1, 0)
# find minimum and maximum intensities
minVal = np.amin(sobelx)
maxVal = np.amax(sobelx)
draw = cv.convertScaleAbs(sobelx, alpha=255.0/(maxVal - minVal), beta=-minVal * 255.0/(maxVal - minVal))
cv.namedWindow('image', cv.WINDOW_AUTOSIZE)
cv.imshow('image', draw)
cv.waitKey()
## [imshow 2]