mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-15 11:10:24 +08:00
initial commit
This commit is contained in:
@ -0,0 +1,70 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
source_window = 'Image'
|
||||
maxTrackbar = 25
|
||||
rng.seed(12345)
|
||||
|
||||
def goodFeaturesToTrack_Demo(val):
|
||||
maxCorners = max(val, 1)
|
||||
|
||||
# Parameters for Shi-Tomasi algorithm
|
||||
qualityLevel = 0.01
|
||||
minDistance = 10
|
||||
blockSize = 3
|
||||
gradientSize = 3
|
||||
useHarrisDetector = False
|
||||
k = 0.04
|
||||
|
||||
# Copy the source image
|
||||
copy = np.copy(src)
|
||||
|
||||
# Apply corner detection
|
||||
corners = cv.goodFeaturesToTrack(src_gray, maxCorners, qualityLevel, minDistance, None, \
|
||||
blockSize=blockSize, gradientSize=gradientSize, useHarrisDetector=useHarrisDetector, k=k)
|
||||
|
||||
# Draw corners detected
|
||||
print('** Number of corners detected:', corners.shape[0])
|
||||
radius = 4
|
||||
for i in range(corners.shape[0]):
|
||||
cv.circle(copy, (corners[i,0,0], corners[i,0,1]), radius, (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)), cv.FILLED)
|
||||
|
||||
# Show what you got
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, copy)
|
||||
|
||||
# Set the needed parameters to find the refined corners
|
||||
winSize = (5, 5)
|
||||
zeroZone = (-1, -1)
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TermCriteria_COUNT, 40, 0.001)
|
||||
|
||||
# Calculate the refined corner locations
|
||||
corners = cv.cornerSubPix(src_gray, corners, winSize, zeroZone, criteria)
|
||||
|
||||
# Write them down
|
||||
for i in range(corners.shape[0]):
|
||||
print(" -- Refined Corner [", i, "] (", corners[i,0,0], ",", corners[i,0,1], ")")
|
||||
|
||||
# Load source image and convert it to gray
|
||||
parser = argparse.ArgumentParser(description='Code for Shi-Tomasi corner detector tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='pic3.png')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
|
||||
# Create a window and a trackbar
|
||||
cv.namedWindow(source_window)
|
||||
maxCorners = 10 # initial threshold
|
||||
cv.createTrackbar('Threshold: ', source_window, maxCorners, maxTrackbar, goodFeaturesToTrack_Demo)
|
||||
cv.imshow(source_window, src)
|
||||
goodFeaturesToTrack_Demo(maxCorners)
|
||||
|
||||
cv.waitKey()
|
@ -0,0 +1,80 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
myHarris_window = 'My Harris corner detector'
|
||||
myShiTomasi_window = 'My Shi Tomasi corner detector'
|
||||
myHarris_qualityLevel = 50
|
||||
myShiTomasi_qualityLevel = 50
|
||||
max_qualityLevel = 100
|
||||
rng.seed(12345)
|
||||
|
||||
def myHarris_function(val):
|
||||
myHarris_copy = np.copy(src)
|
||||
myHarris_qualityLevel = max(val, 1)
|
||||
|
||||
for i in range(src_gray.shape[0]):
|
||||
for j in range(src_gray.shape[1]):
|
||||
if Mc[i,j] > myHarris_minVal + ( myHarris_maxVal - myHarris_minVal )*myHarris_qualityLevel/max_qualityLevel:
|
||||
cv.circle(myHarris_copy, (j,i), 4, (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)), cv.FILLED)
|
||||
|
||||
cv.imshow(myHarris_window, myHarris_copy)
|
||||
|
||||
def myShiTomasi_function(val):
|
||||
myShiTomasi_copy = np.copy(src)
|
||||
myShiTomasi_qualityLevel = max(val, 1)
|
||||
|
||||
for i in range(src_gray.shape[0]):
|
||||
for j in range(src_gray.shape[1]):
|
||||
if myShiTomasi_dst[i,j] > myShiTomasi_minVal + ( myShiTomasi_maxVal - myShiTomasi_minVal )*myShiTomasi_qualityLevel/max_qualityLevel:
|
||||
cv.circle(myShiTomasi_copy, (j,i), 4, (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)), cv.FILLED)
|
||||
|
||||
cv.imshow(myShiTomasi_window, myShiTomasi_copy)
|
||||
|
||||
# Load source image and convert it to gray
|
||||
parser = argparse.ArgumentParser(description='Code for Creating your own corner detector tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='building.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
|
||||
# Set some parameters
|
||||
blockSize = 3
|
||||
apertureSize = 3
|
||||
|
||||
# My Harris matrix -- Using cornerEigenValsAndVecs
|
||||
myHarris_dst = cv.cornerEigenValsAndVecs(src_gray, blockSize, apertureSize)
|
||||
|
||||
# calculate Mc
|
||||
Mc = np.empty(src_gray.shape, dtype=np.float32)
|
||||
for i in range(src_gray.shape[0]):
|
||||
for j in range(src_gray.shape[1]):
|
||||
lambda_1 = myHarris_dst[i,j,0]
|
||||
lambda_2 = myHarris_dst[i,j,1]
|
||||
Mc[i,j] = lambda_1*lambda_2 - 0.04*pow( ( lambda_1 + lambda_2 ), 2 )
|
||||
|
||||
myHarris_minVal, myHarris_maxVal, _, _ = cv.minMaxLoc(Mc)
|
||||
|
||||
# Create Window and Trackbar
|
||||
cv.namedWindow(myHarris_window)
|
||||
cv.createTrackbar('Quality Level:', myHarris_window, myHarris_qualityLevel, max_qualityLevel, myHarris_function)
|
||||
myHarris_function(myHarris_qualityLevel)
|
||||
|
||||
# My Shi-Tomasi -- Using cornerMinEigenVal
|
||||
myShiTomasi_dst = cv.cornerMinEigenVal(src_gray, blockSize, apertureSize)
|
||||
|
||||
myShiTomasi_minVal, myShiTomasi_maxVal, _, _ = cv.minMaxLoc(myShiTomasi_dst)
|
||||
|
||||
# Create Window and Trackbar
|
||||
cv.namedWindow(myShiTomasi_window)
|
||||
cv.createTrackbar('Quality Level:', myShiTomasi_window, myShiTomasi_qualityLevel, max_qualityLevel, myShiTomasi_function)
|
||||
myShiTomasi_function(myShiTomasi_qualityLevel)
|
||||
|
||||
cv.waitKey()
|
@ -0,0 +1,58 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
source_window = 'Image'
|
||||
maxTrackbar = 100
|
||||
rng.seed(12345)
|
||||
|
||||
def goodFeaturesToTrack_Demo(val):
|
||||
maxCorners = max(val, 1)
|
||||
|
||||
# Parameters for Shi-Tomasi algorithm
|
||||
qualityLevel = 0.01
|
||||
minDistance = 10
|
||||
blockSize = 3
|
||||
gradientSize = 3
|
||||
useHarrisDetector = False
|
||||
k = 0.04
|
||||
|
||||
# Copy the source image
|
||||
copy = np.copy(src)
|
||||
|
||||
# Apply corner detection
|
||||
corners = cv.goodFeaturesToTrack(src_gray, maxCorners, qualityLevel, minDistance, None, \
|
||||
blockSize=blockSize, gradientSize=gradientSize, useHarrisDetector=useHarrisDetector, k=k)
|
||||
|
||||
# Draw corners detected
|
||||
print('** Number of corners detected:', corners.shape[0])
|
||||
radius = 4
|
||||
for i in range(corners.shape[0]):
|
||||
cv.circle(copy, (corners[i,0,0], corners[i,0,1]), radius, (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)), cv.FILLED)
|
||||
|
||||
# Show what you got
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, copy)
|
||||
|
||||
# Load source image and convert it to gray
|
||||
parser = argparse.ArgumentParser(description='Code for Shi-Tomasi corner detector tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='pic3.png')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
|
||||
# Create a window and a trackbar
|
||||
cv.namedWindow(source_window)
|
||||
maxCorners = 23 # initial threshold
|
||||
cv.createTrackbar('Threshold: ', source_window, maxCorners, maxTrackbar, goodFeaturesToTrack_Demo)
|
||||
cv.imshow(source_window, src)
|
||||
goodFeaturesToTrack_Demo(maxCorners)
|
||||
|
||||
cv.waitKey()
|
@ -0,0 +1,55 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
|
||||
source_window = 'Source image'
|
||||
corners_window = 'Corners detected'
|
||||
max_thresh = 255
|
||||
|
||||
def cornerHarris_demo(val):
|
||||
thresh = val
|
||||
|
||||
# Detector parameters
|
||||
blockSize = 2
|
||||
apertureSize = 3
|
||||
k = 0.04
|
||||
|
||||
# Detecting corners
|
||||
dst = cv.cornerHarris(src_gray, blockSize, apertureSize, k)
|
||||
|
||||
# Normalizing
|
||||
dst_norm = np.empty(dst.shape, dtype=np.float32)
|
||||
cv.normalize(dst, dst_norm, alpha=0, beta=255, norm_type=cv.NORM_MINMAX)
|
||||
dst_norm_scaled = cv.convertScaleAbs(dst_norm)
|
||||
|
||||
# Drawing a circle around corners
|
||||
for i in range(dst_norm.shape[0]):
|
||||
for j in range(dst_norm.shape[1]):
|
||||
if int(dst_norm[i,j]) > thresh:
|
||||
cv.circle(dst_norm_scaled, (j,i), 5, (0), 2)
|
||||
|
||||
# Showing the result
|
||||
cv.namedWindow(corners_window)
|
||||
cv.imshow(corners_window, dst_norm_scaled)
|
||||
|
||||
# Load source image and convert it to gray
|
||||
parser = argparse.ArgumentParser(description='Code for Harris corner detector tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='building.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
|
||||
# Create a window and a trackbar
|
||||
cv.namedWindow(source_window)
|
||||
thresh = 200 # initial threshold
|
||||
cv.createTrackbar('Threshold: ', source_window, thresh, max_thresh, cornerHarris_demo)
|
||||
cv.imshow(source_window, src)
|
||||
cornerHarris_demo(thresh)
|
||||
|
||||
cv.waitKey()
|
Reference in New Issue
Block a user