mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-15 03:01:04 +08:00
initial commit
This commit is contained in:
@ -0,0 +1,82 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
## [Canny]
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
## [Canny]
|
||||
|
||||
## [findContours]
|
||||
# Find contours
|
||||
contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
## [findContours]
|
||||
|
||||
## [allthework]
|
||||
# Approximate contours to polygons + get bounding rects and circles
|
||||
contours_poly = [None]*len(contours)
|
||||
boundRect = [None]*len(contours)
|
||||
centers = [None]*len(contours)
|
||||
radius = [None]*len(contours)
|
||||
for i, c in enumerate(contours):
|
||||
contours_poly[i] = cv.approxPolyDP(c, 3, True)
|
||||
boundRect[i] = cv.boundingRect(contours_poly[i])
|
||||
centers[i], radius[i] = cv.minEnclosingCircle(contours_poly[i])
|
||||
## [allthework]
|
||||
|
||||
## [zeroMat]
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
## [zeroMat]
|
||||
|
||||
## [forContour]
|
||||
# Draw polygonal contour + bonding rects + circles
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
cv.drawContours(drawing, contours_poly, i, color)
|
||||
cv.rectangle(drawing, (int(boundRect[i][0]), int(boundRect[i][1])), \
|
||||
(int(boundRect[i][0]+boundRect[i][2]), int(boundRect[i][1]+boundRect[i][3])), color, 2)
|
||||
cv.circle(drawing, (int(centers[i][0]), int(centers[i][1])), int(radius[i]), color, 2)
|
||||
## [forContour]
|
||||
|
||||
## [showDrawings]
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
## [showDrawings]
|
||||
|
||||
## [setup]
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Creating Bounding boxes and circles for contours tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
## [setup]
|
||||
|
||||
## [createWindow]
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
## [createWindow]
|
||||
## [trackbar]
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
## [trackbar]
|
||||
|
||||
cv.waitKey()
|
@ -0,0 +1,82 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
## [Canny]
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
## [Canny]
|
||||
|
||||
## [findContours]
|
||||
# Find contours
|
||||
contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
## [findContours]
|
||||
|
||||
# Find the rotated rectangles and ellipses for each contour
|
||||
minRect = [None]*len(contours)
|
||||
minEllipse = [None]*len(contours)
|
||||
for i, c in enumerate(contours):
|
||||
minRect[i] = cv.minAreaRect(c)
|
||||
if c.shape[0] > 5:
|
||||
minEllipse[i] = cv.fitEllipse(c)
|
||||
|
||||
# Draw contours + rotated rects + ellipses
|
||||
## [zeroMat]
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
## [zeroMat]
|
||||
## [forContour]
|
||||
for i, c in enumerate(contours):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
# contour
|
||||
cv.drawContours(drawing, contours, i, color)
|
||||
# ellipse
|
||||
if c.shape[0] > 5:
|
||||
cv.ellipse(drawing, minEllipse[i], color, 2)
|
||||
# rotated rectangle
|
||||
box = cv.boxPoints(minRect[i])
|
||||
box = np.intp(box) #np.intp: Integer used for indexing (same as C ssize_t; normally either int32 or int64)
|
||||
cv.drawContours(drawing, [box], 0, color)
|
||||
## [forContour]
|
||||
|
||||
## [showDrawings]
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
## [showDrawings]
|
||||
|
||||
## [setup]
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Creating Bounding rotated boxes and ellipses for contours tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
## [setup]
|
||||
|
||||
## [createWindow]
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
## [createWindow]
|
||||
## [trackbar]
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny Thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
## [trackbar]
|
||||
|
||||
cv.waitKey()
|
@ -0,0 +1,50 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
|
||||
# Find contours
|
||||
contours, hierarchy = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
# Draw contours
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
cv.drawContours(drawing, contours, i, color, 2, cv.LINE_8, hierarchy, 0)
|
||||
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Finding contours in your image tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='HappyFish.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny Thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
|
||||
cv.waitKey()
|
@ -0,0 +1,57 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
|
||||
# Find contours
|
||||
contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
# Find the convex hull object for each contour
|
||||
hull_list = []
|
||||
for i in range(len(contours)):
|
||||
hull = cv.convexHull(contours[i])
|
||||
hull_list.append(hull)
|
||||
|
||||
# Draw contours + hull results
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
cv.drawContours(drawing, contours, i, color)
|
||||
cv.drawContours(drawing, hull_list, i, color)
|
||||
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Convex Hull tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
|
||||
cv.waitKey()
|
@ -0,0 +1,83 @@
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
## [Canny]
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
## [Canny]
|
||||
|
||||
## [findContours]
|
||||
# Find contours
|
||||
contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
## [findContours]
|
||||
|
||||
# Get the moments
|
||||
mu = [None]*len(contours)
|
||||
for i in range(len(contours)):
|
||||
mu[i] = cv.moments(contours[i])
|
||||
|
||||
# Get the mass centers
|
||||
mc = [None]*len(contours)
|
||||
for i in range(len(contours)):
|
||||
# add 1e-5 to avoid division by zero
|
||||
mc[i] = (mu[i]['m10'] / (mu[i]['m00'] + 1e-5), mu[i]['m01'] / (mu[i]['m00'] + 1e-5))
|
||||
|
||||
# Draw contours
|
||||
## [zeroMat]
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
## [zeroMat]
|
||||
## [forContour]
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
cv.drawContours(drawing, contours, i, color, 2)
|
||||
cv.circle(drawing, (int(mc[i][0]), int(mc[i][1])), 4, color, -1)
|
||||
## [forContour]
|
||||
|
||||
## [showDrawings]
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
## [showDrawings]
|
||||
|
||||
# Calculate the area with the moments 00 and compare with the result of the OpenCV function
|
||||
for i in range(len(contours)):
|
||||
print(' * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f' % (i, mu[i]['m00'], cv.contourArea(contours[i]), cv.arcLength(contours[i], True)))
|
||||
|
||||
## [setup]
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Image Moments tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
## [setup]
|
||||
|
||||
## [createWindow]
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
## [createWindow]
|
||||
## [trackbar]
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny Thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
## [trackbar]
|
||||
|
||||
cv.waitKey()
|
@ -0,0 +1,52 @@
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
# Create an image
|
||||
r = 100
|
||||
src = np.zeros((4*r, 4*r), dtype=np.uint8)
|
||||
|
||||
# Create a sequence of points to make a contour
|
||||
vert = [None]*6
|
||||
vert[0] = (3*r//2, int(1.34*r))
|
||||
vert[1] = (1*r, 2*r)
|
||||
vert[2] = (3*r//2, int(2.866*r))
|
||||
vert[3] = (5*r//2, int(2.866*r))
|
||||
vert[4] = (3*r, 2*r)
|
||||
vert[5] = (5*r//2, int(1.34*r))
|
||||
|
||||
# Draw it in src
|
||||
for i in range(6):
|
||||
cv.line(src, vert[i], vert[(i+1)%6], ( 255 ), 3)
|
||||
|
||||
# Get the contours
|
||||
contours, _ = cv.findContours(src, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
# Calculate the distances to the contour
|
||||
raw_dist = np.empty(src.shape, dtype=np.float32)
|
||||
for i in range(src.shape[0]):
|
||||
for j in range(src.shape[1]):
|
||||
raw_dist[i,j] = cv.pointPolygonTest(contours[0], (j,i), True)
|
||||
|
||||
minVal, maxVal, _, maxDistPt = cv.minMaxLoc(raw_dist)
|
||||
minVal = abs(minVal)
|
||||
maxVal = abs(maxVal)
|
||||
|
||||
# Depicting the distances graphically
|
||||
drawing = np.zeros((src.shape[0], src.shape[1], 3), dtype=np.uint8)
|
||||
for i in range(src.shape[0]):
|
||||
for j in range(src.shape[1]):
|
||||
if raw_dist[i,j] < 0:
|
||||
drawing[i,j,0] = 255 - abs(raw_dist[i,j]) * 255 / minVal
|
||||
elif raw_dist[i,j] > 0:
|
||||
drawing[i,j,2] = 255 - raw_dist[i,j] * 255 / maxVal
|
||||
else:
|
||||
drawing[i,j,0] = 255
|
||||
drawing[i,j,1] = 255
|
||||
drawing[i,j,2] = 255
|
||||
|
||||
cv.circle(drawing,maxDistPt, int(maxVal),tuple(255,255,255), 1, cv.LINE_8, 0)
|
||||
cv.imshow('Source', src)
|
||||
cv.imshow('Distance and inscribed circle', drawing)
|
||||
cv.waitKey()
|
Reference in New Issue
Block a user