mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-15 11:10:24 +08:00
initial commit
This commit is contained in:
@ -0,0 +1,71 @@
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
|
||||
## [Load image]
|
||||
parser = argparse.ArgumentParser(description='Code for Histogram Calculation tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(cv.samples.findFile(args.input))
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
## [Load image]
|
||||
|
||||
## [Separate the image in 3 places ( B, G and R )]
|
||||
bgr_planes = cv.split(src)
|
||||
## [Separate the image in 3 places ( B, G and R )]
|
||||
|
||||
## [Establish the number of bins]
|
||||
histSize = 256
|
||||
## [Establish the number of bins]
|
||||
|
||||
## [Set the ranges ( for B,G,R) )]
|
||||
histRange = (0, 256) # the upper boundary is exclusive
|
||||
## [Set the ranges ( for B,G,R) )]
|
||||
|
||||
## [Set histogram param]
|
||||
accumulate = False
|
||||
## [Set histogram param]
|
||||
|
||||
## [Compute the histograms]
|
||||
b_hist = cv.calcHist(bgr_planes, [0], None, [histSize], histRange, accumulate=accumulate)
|
||||
g_hist = cv.calcHist(bgr_planes, [1], None, [histSize], histRange, accumulate=accumulate)
|
||||
r_hist = cv.calcHist(bgr_planes, [2], None, [histSize], histRange, accumulate=accumulate)
|
||||
## [Compute the histograms]
|
||||
|
||||
## [Draw the histograms for B, G and R]
|
||||
hist_w = 512
|
||||
hist_h = 400
|
||||
bin_w = int(round( hist_w/histSize ))
|
||||
|
||||
histImage = np.zeros((hist_h, hist_w, 3), dtype=np.uint8)
|
||||
## [Draw the histograms for B, G and R]
|
||||
|
||||
## [Normalize the result to ( 0, histImage.rows )]
|
||||
cv.normalize(b_hist, b_hist, alpha=0, beta=hist_h, norm_type=cv.NORM_MINMAX)
|
||||
cv.normalize(g_hist, g_hist, alpha=0, beta=hist_h, norm_type=cv.NORM_MINMAX)
|
||||
cv.normalize(r_hist, r_hist, alpha=0, beta=hist_h, norm_type=cv.NORM_MINMAX)
|
||||
## [Normalize the result to ( 0, histImage.rows )]
|
||||
|
||||
## [Draw for each channel]
|
||||
for i in range(1, histSize):
|
||||
cv.line(histImage, ( bin_w*(i-1), hist_h - int(round(b_hist[i-1])) ),
|
||||
( bin_w*(i), hist_h - int(round(b_hist[i])) ),
|
||||
( 255, 0, 0), thickness=2)
|
||||
cv.line(histImage, ( bin_w*(i-1), hist_h - int(round(g_hist[i-1])) ),
|
||||
( bin_w*(i), hist_h - int(round(g_hist[i])) ),
|
||||
( 0, 255, 0), thickness=2)
|
||||
cv.line(histImage, ( bin_w*(i-1), hist_h - int(round(r_hist[i-1])) ),
|
||||
( bin_w*(i), hist_h - int(round(r_hist[i])) ),
|
||||
( 0, 0, 255), thickness=2)
|
||||
## [Draw for each channel]
|
||||
|
||||
## [Display]
|
||||
cv.imshow('Source image', src)
|
||||
cv.imshow('calcHist Demo', histImage)
|
||||
cv.waitKey()
|
||||
## [Display]
|
Reference in New Issue
Block a user