initial commit

This commit is contained in:
Joachim
2020-03-23 11:48:41 +01:00
commit fce6dc35b4
6434 changed files with 2823345 additions and 0 deletions

View File

@ -0,0 +1,351 @@
#include "opencv2/opencv_modules.hpp"
#include <iostream>
#if defined(HAVE_OPENCV_GAPI)
#include <chrono>
#include <iomanip>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/gapi.hpp"
#include "opencv2/gapi/core.hpp"
#include "opencv2/gapi/imgproc.hpp"
#include "opencv2/gapi/infer.hpp"
#include "opencv2/gapi/infer/ie.hpp"
#include "opencv2/gapi/cpu/gcpukernel.hpp"
#include "opencv2/gapi/streaming/cap.hpp"
#include "opencv2/highgui.hpp"
const std::string about =
"This is an OpenCV-based version of Security Barrier Camera example";
const std::string keys =
"{ h help | | print this help message }"
"{ input | | Path to an input video file }"
"{ detm | | IE vehicle/license plate detection model IR }"
"{ detw | | IE vehicle/license plate detection model weights }"
"{ detd | | IE vehicle/license plate detection model device }"
"{ vehm | | IE vehicle attributes model IR }"
"{ vehw | | IE vehicle attributes model weights }"
"{ vehd | | IE vehicle attributes model device }"
"{ lprm | | IE license plate recognition model IR }"
"{ lprw | | IE license plate recognition model weights }"
"{ lprd | | IE license plate recognition model device }"
"{ pure | | When set, no output is displayed. Useful for benchmarking }"
"{ ser | | When set, runs a regular (serial) pipeline }";
namespace {
struct Avg {
struct Elapsed {
explicit Elapsed(double ms) : ss(ms/1000.), mm(static_cast<int>(ss)/60) {}
const double ss;
const int mm;
};
using MS = std::chrono::duration<double, std::ratio<1, 1000>>;
using TS = std::chrono::time_point<std::chrono::high_resolution_clock>;
TS started;
void start() { started = now(); }
TS now() const { return std::chrono::high_resolution_clock::now(); }
double tick() const { return std::chrono::duration_cast<MS>(now() - started).count(); }
Elapsed elapsed() const { return Elapsed{tick()}; }
double fps(std::size_t n) const { return static_cast<double>(n) / (tick() / 1000.); }
};
std::ostream& operator<<(std::ostream &os, const Avg::Elapsed &e) {
os << e.mm << ':' << (e.ss - 60*e.mm);
return os;
}
} // namespace
namespace custom {
G_API_NET(VehicleLicenseDetector, <cv::GMat(cv::GMat)>, "vehicle-license-plate-detector");
using Attrs = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(VehicleAttributes, <Attrs(cv::GMat)>, "vehicle-attributes");
G_API_NET(LPR, <cv::GMat(cv::GMat)>, "license-plate-recognition");
using GVehiclesPlates = std::tuple< cv::GArray<cv::Rect>
, cv::GArray<cv::Rect> >;
G_API_OP_M(ProcessDetections,
<GVehiclesPlates(cv::GMat, cv::GMat)>,
"custom.security_barrier.detector.postproc") {
static std::tuple<cv::GArrayDesc,cv::GArrayDesc>
outMeta(const cv::GMatDesc &, const cv::GMatDesc) {
// FIXME: Need to get rid of this - literally there's nothing useful
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
}
};
GAPI_OCV_KERNEL(OCVProcessDetections, ProcessDetections) {
static void run(const cv::Mat &in_ssd_result,
const cv::Mat &in_frame,
std::vector<cv::Rect> &out_vehicles,
std::vector<cv::Rect> &out_plates) {
const int MAX_PROPOSALS = 200;
const int OBJECT_SIZE = 7;
const cv::Size upscale = in_frame.size();
const cv::Rect surface({0,0}, upscale);
out_vehicles.clear();
out_plates.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0]; // batch id
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
if (image_id < 0.f) { // indicates end of detections
break;
}
if (confidence < 0.5f) { // fixme: hard-coded snapshot
continue;
}
cv::Rect rc;
rc.x = static_cast<int>(rc_left * upscale.width);
rc.y = static_cast<int>(rc_top * upscale.height);
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
using PT = cv::Point;
using SZ = cv::Size;
switch (static_cast<int>(label)) {
case 1: out_vehicles.push_back(rc & surface); break;
case 2: out_plates.emplace_back((rc-PT(15,15)+SZ(30,30)) & surface); break;
default: CV_Assert(false && "Unknown object class");
}
}
}
};
} // namespace custom
namespace labels {
const std::string colors[] = {
"white", "gray", "yellow", "red", "green", "blue", "black"
};
const std::string types[] = {
"car", "van", "truck", "bus"
};
const std::vector<std::string> license_text = {
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
"<Anhui>", "<Beijing>", "<Chongqing>", "<Fujian>",
"<Gansu>", "<Guangdong>", "<Guangxi>", "<Guizhou>",
"<Hainan>", "<Hebei>", "<Heilongjiang>", "<Henan>",
"<HongKong>", "<Hubei>", "<Hunan>", "<InnerMongolia>",
"<Jiangsu>", "<Jiangxi>", "<Jilin>", "<Liaoning>",
"<Macau>", "<Ningxia>", "<Qinghai>", "<Shaanxi>",
"<Shandong>", "<Shanghai>", "<Shanxi>", "<Sichuan>",
"<Tianjin>", "<Tibet>", "<Xinjiang>", "<Yunnan>",
"<Zhejiang>", "<police>",
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J",
"K", "L", "M", "N", "O", "P", "Q", "R", "S", "T",
"U", "V", "W", "X", "Y", "Z"
};
namespace {
void DrawResults(cv::Mat &frame,
const std::vector<cv::Rect> &vehicles,
const std::vector<cv::Mat> &out_colors,
const std::vector<cv::Mat> &out_types,
const std::vector<cv::Rect> &plates,
const std::vector<cv::Mat> &out_numbers) {
CV_Assert(vehicles.size() == out_colors.size());
CV_Assert(vehicles.size() == out_types.size());
CV_Assert(plates.size() == out_numbers.size());
for (auto it = vehicles.begin(); it != vehicles.end(); ++it) {
const auto idx = std::distance(vehicles.begin(), it);
const auto &rc = *it;
const float *colors_data = out_colors[idx].ptr<float>();
const float *types_data = out_types [idx].ptr<float>();
const auto color_id = std::max_element(colors_data, colors_data + 7) - colors_data;
const auto type_id = std::max_element(types_data, types_data + 4) - types_data;
const int ATTRIB_OFFSET = 25;
cv::rectangle(frame, rc, {0, 255, 0}, 4);
cv::putText(frame, labels::colors[color_id],
cv::Point(rc.x + 5, rc.y + ATTRIB_OFFSET),
cv::FONT_HERSHEY_COMPLEX_SMALL,
1,
cv::Scalar(255, 0, 0));
cv::putText(frame, labels::types[type_id],
cv::Point(rc.x + 5, rc.y + ATTRIB_OFFSET * 2),
cv::FONT_HERSHEY_COMPLEX_SMALL,
1,
cv::Scalar(255, 0, 0));
}
for (auto it = plates.begin(); it != plates.end(); ++it) {
const int MAX_LICENSE = 88;
const int LPR_OFFSET = 50;
const auto &rc = *it;
const auto idx = std::distance(plates.begin(), it);
std::string result;
const auto *lpr_data = out_numbers[idx].ptr<float>();
for (int i = 0; i < MAX_LICENSE; i++) {
if (lpr_data[i] == -1) break;
result += labels::license_text[static_cast<size_t>(lpr_data[i])];
}
const int y_pos = std::max(0, rc.y + rc.height - LPR_OFFSET);
cv::rectangle(frame, rc, {0, 0, 255}, 4);
cv::putText(frame, result,
cv::Point(rc.x, y_pos),
cv::FONT_HERSHEY_COMPLEX_SMALL,
1,
cv::Scalar(0, 0, 255));
}
}
void DrawFPS(cv::Mat &frame, std::size_t n, double fps) {
std::ostringstream out;
out << "FRAME " << n << ": "
<< std::fixed << std::setprecision(2) << fps
<< " FPS (AVG)";
cv::putText(frame, out.str(),
cv::Point(0, frame.rows),
cv::FONT_HERSHEY_SIMPLEX,
1,
cv::Scalar(0, 0, 0),
2);
}
} // anonymous namespace
} // namespace labels
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
const std::string input = cmd.get<std::string>("input");
const bool no_show = cmd.get<bool>("pure");
cv::GComputation pp([]() {
cv::GMat in;
cv::GMat detections = cv::gapi::infer<custom::VehicleLicenseDetector>(in);
cv::GArray<cv::Rect> vehicles;
cv::GArray<cv::Rect> plates;
std::tie(vehicles, plates) = custom::ProcessDetections::on(detections, in);
cv::GArray<cv::GMat> colors;
cv::GArray<cv::GMat> types;
std::tie(colors, types) = cv::gapi::infer<custom::VehicleAttributes>(vehicles, in);
cv::GArray<cv::GMat> numbers = cv::gapi::infer<custom::LPR>(plates, in);
cv::GMat frame = cv::gapi::copy(in); // pass-through the input frame
return cv::GComputation(cv::GIn(in),
cv::GOut(frame, vehicles, colors, types, plates, numbers));
});
// Note: it might be very useful to have dimensions loaded at this point!
auto det_net = cv::gapi::ie::Params<custom::VehicleLicenseDetector> {
cmd.get<std::string>("detm"), // path to topology IR
cmd.get<std::string>("detw"), // path to weights
cmd.get<std::string>("detd"), // device specifier
};
auto attr_net = cv::gapi::ie::Params<custom::VehicleAttributes> {
cmd.get<std::string>("vehm"), // path to topology IR
cmd.get<std::string>("vehw"), // path to weights
cmd.get<std::string>("vehd"), // device specifier
}.cfgOutputLayers({ "color", "type" });
// Fill a special LPR input (seq_ind) with a predefined value
// First element is 0.f, the rest 87 are 1.f
const std::vector<int> lpr_seq_dims = {88,1};
cv::Mat lpr_seq(lpr_seq_dims, CV_32F, cv::Scalar(1.f));
lpr_seq.ptr<float>()[0] = 0.f;
auto lpr_net = cv::gapi::ie::Params<custom::LPR> {
cmd.get<std::string>("lprm"), // path to topology IR
cmd.get<std::string>("lprw"), // path to weights
cmd.get<std::string>("lprd"), // device specifier
}.constInput("seq_ind", lpr_seq);
auto kernels = cv::gapi::kernels<custom::OCVProcessDetections>();
auto networks = cv::gapi::networks(det_net, attr_net, lpr_net);
Avg avg;
cv::Mat frame;
std::vector<cv::Rect> vehicles, plates;
std::vector<cv::Mat> out_colors;
std::vector<cv::Mat> out_types;
std::vector<cv::Mat> out_numbers;
std::size_t frames = 0u;
std::cout << "Reading " << input << std::endl;
if (cmd.get<bool>("ser")) {
std::cout << "Going serial..." << std::endl;
cv::VideoCapture cap(input);
auto cc = pp.compile(cv::GMatDesc{CV_8U,3,cv::Size(1920,1080)},
cv::compile_args(kernels, networks));
avg.start();
while (cv::waitKey(1) < 0) {
cap >> frame;
if (frame.empty()) break;
cc(cv::gin(frame),
cv::gout(frame, vehicles, out_colors, out_types, plates, out_numbers));
frames++;
labels::DrawResults(frame, vehicles, out_colors, out_types, plates, out_numbers);
labels::DrawFPS(frame, frames, avg.fps(frames));
if (!no_show) cv::imshow("Out", frame);
}
} else {
std::cout << "Going pipelined..." << std::endl;
auto cc = pp.compileStreaming(cv::GMatDesc{CV_8U,3,cv::Size(1920,1080)},
cv::compile_args(kernels, networks));
cc.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
avg.start();
cc.start();
// Implement different execution policies depending on the display option
// for the best performance.
while (cc.running()) {
auto out_vector = cv::gout(frame, vehicles, out_colors, out_types, plates, out_numbers);
if (no_show) {
// This is purely a video processing. No need to balance with UI rendering.
// Use a blocking pull() to obtain data. Break the loop if the stream is over.
if (!cc.pull(std::move(out_vector)))
break;
} else if (!cc.try_pull(std::move(out_vector))) {
// Use a non-blocking try_pull() to obtain data.
// If there's no data, let UI refresh (and handle keypress)
if (cv::waitKey(1) >= 0) break;
else continue;
}
// At this point we have data for sure (obtained in either blocking or non-blocking way).
frames++;
labels::DrawResults(frame, vehicles, out_colors, out_types, plates, out_numbers);
labels::DrawFPS(frame, frames, avg.fps(frames));
if (!no_show) cv::imshow("Out", frame);
}
cc.stop();
}
std::cout << "Processed " << frames << " frames in " << avg.elapsed() << std::endl;
return 0;
}
#else
int main()
{
std::cerr << "This tutorial code requires G-API module "
"with Inference Engine backend to run"
<< std::endl;
return 1;
}
#endif // HAVE_OPECV_GAPI