mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-15 03:01:04 +08:00
initial commit
This commit is contained in:
@ -0,0 +1,351 @@
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include <iostream>
|
||||
#if defined(HAVE_OPENCV_GAPI)
|
||||
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/gapi.hpp"
|
||||
#include "opencv2/gapi/core.hpp"
|
||||
#include "opencv2/gapi/imgproc.hpp"
|
||||
#include "opencv2/gapi/infer.hpp"
|
||||
#include "opencv2/gapi/infer/ie.hpp"
|
||||
#include "opencv2/gapi/cpu/gcpukernel.hpp"
|
||||
#include "opencv2/gapi/streaming/cap.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
const std::string about =
|
||||
"This is an OpenCV-based version of Security Barrier Camera example";
|
||||
const std::string keys =
|
||||
"{ h help | | print this help message }"
|
||||
"{ input | | Path to an input video file }"
|
||||
"{ detm | | IE vehicle/license plate detection model IR }"
|
||||
"{ detw | | IE vehicle/license plate detection model weights }"
|
||||
"{ detd | | IE vehicle/license plate detection model device }"
|
||||
"{ vehm | | IE vehicle attributes model IR }"
|
||||
"{ vehw | | IE vehicle attributes model weights }"
|
||||
"{ vehd | | IE vehicle attributes model device }"
|
||||
"{ lprm | | IE license plate recognition model IR }"
|
||||
"{ lprw | | IE license plate recognition model weights }"
|
||||
"{ lprd | | IE license plate recognition model device }"
|
||||
"{ pure | | When set, no output is displayed. Useful for benchmarking }"
|
||||
"{ ser | | When set, runs a regular (serial) pipeline }";
|
||||
|
||||
namespace {
|
||||
struct Avg {
|
||||
struct Elapsed {
|
||||
explicit Elapsed(double ms) : ss(ms/1000.), mm(static_cast<int>(ss)/60) {}
|
||||
const double ss;
|
||||
const int mm;
|
||||
};
|
||||
|
||||
using MS = std::chrono::duration<double, std::ratio<1, 1000>>;
|
||||
using TS = std::chrono::time_point<std::chrono::high_resolution_clock>;
|
||||
TS started;
|
||||
|
||||
void start() { started = now(); }
|
||||
TS now() const { return std::chrono::high_resolution_clock::now(); }
|
||||
double tick() const { return std::chrono::duration_cast<MS>(now() - started).count(); }
|
||||
Elapsed elapsed() const { return Elapsed{tick()}; }
|
||||
double fps(std::size_t n) const { return static_cast<double>(n) / (tick() / 1000.); }
|
||||
};
|
||||
std::ostream& operator<<(std::ostream &os, const Avg::Elapsed &e) {
|
||||
os << e.mm << ':' << (e.ss - 60*e.mm);
|
||||
return os;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
|
||||
namespace custom {
|
||||
G_API_NET(VehicleLicenseDetector, <cv::GMat(cv::GMat)>, "vehicle-license-plate-detector");
|
||||
|
||||
using Attrs = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(VehicleAttributes, <Attrs(cv::GMat)>, "vehicle-attributes");
|
||||
G_API_NET(LPR, <cv::GMat(cv::GMat)>, "license-plate-recognition");
|
||||
|
||||
using GVehiclesPlates = std::tuple< cv::GArray<cv::Rect>
|
||||
, cv::GArray<cv::Rect> >;
|
||||
G_API_OP_M(ProcessDetections,
|
||||
<GVehiclesPlates(cv::GMat, cv::GMat)>,
|
||||
"custom.security_barrier.detector.postproc") {
|
||||
static std::tuple<cv::GArrayDesc,cv::GArrayDesc>
|
||||
outMeta(const cv::GMatDesc &, const cv::GMatDesc) {
|
||||
// FIXME: Need to get rid of this - literally there's nothing useful
|
||||
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
|
||||
}
|
||||
};
|
||||
|
||||
GAPI_OCV_KERNEL(OCVProcessDetections, ProcessDetections) {
|
||||
static void run(const cv::Mat &in_ssd_result,
|
||||
const cv::Mat &in_frame,
|
||||
std::vector<cv::Rect> &out_vehicles,
|
||||
std::vector<cv::Rect> &out_plates) {
|
||||
const int MAX_PROPOSALS = 200;
|
||||
const int OBJECT_SIZE = 7;
|
||||
const cv::Size upscale = in_frame.size();
|
||||
const cv::Rect surface({0,0}, upscale);
|
||||
|
||||
out_vehicles.clear();
|
||||
out_plates.clear();
|
||||
|
||||
const float *data = in_ssd_result.ptr<float>();
|
||||
for (int i = 0; i < MAX_PROPOSALS; i++) {
|
||||
const float image_id = data[i * OBJECT_SIZE + 0]; // batch id
|
||||
const float label = data[i * OBJECT_SIZE + 1];
|
||||
const float confidence = data[i * OBJECT_SIZE + 2];
|
||||
const float rc_left = data[i * OBJECT_SIZE + 3];
|
||||
const float rc_top = data[i * OBJECT_SIZE + 4];
|
||||
const float rc_right = data[i * OBJECT_SIZE + 5];
|
||||
const float rc_bottom = data[i * OBJECT_SIZE + 6];
|
||||
|
||||
if (image_id < 0.f) { // indicates end of detections
|
||||
break;
|
||||
}
|
||||
if (confidence < 0.5f) { // fixme: hard-coded snapshot
|
||||
continue;
|
||||
}
|
||||
|
||||
cv::Rect rc;
|
||||
rc.x = static_cast<int>(rc_left * upscale.width);
|
||||
rc.y = static_cast<int>(rc_top * upscale.height);
|
||||
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
|
||||
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
|
||||
|
||||
using PT = cv::Point;
|
||||
using SZ = cv::Size;
|
||||
switch (static_cast<int>(label)) {
|
||||
case 1: out_vehicles.push_back(rc & surface); break;
|
||||
case 2: out_plates.emplace_back((rc-PT(15,15)+SZ(30,30)) & surface); break;
|
||||
default: CV_Assert(false && "Unknown object class");
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace custom
|
||||
|
||||
namespace labels {
|
||||
const std::string colors[] = {
|
||||
"white", "gray", "yellow", "red", "green", "blue", "black"
|
||||
};
|
||||
const std::string types[] = {
|
||||
"car", "van", "truck", "bus"
|
||||
};
|
||||
const std::vector<std::string> license_text = {
|
||||
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
|
||||
"<Anhui>", "<Beijing>", "<Chongqing>", "<Fujian>",
|
||||
"<Gansu>", "<Guangdong>", "<Guangxi>", "<Guizhou>",
|
||||
"<Hainan>", "<Hebei>", "<Heilongjiang>", "<Henan>",
|
||||
"<HongKong>", "<Hubei>", "<Hunan>", "<InnerMongolia>",
|
||||
"<Jiangsu>", "<Jiangxi>", "<Jilin>", "<Liaoning>",
|
||||
"<Macau>", "<Ningxia>", "<Qinghai>", "<Shaanxi>",
|
||||
"<Shandong>", "<Shanghai>", "<Shanxi>", "<Sichuan>",
|
||||
"<Tianjin>", "<Tibet>", "<Xinjiang>", "<Yunnan>",
|
||||
"<Zhejiang>", "<police>",
|
||||
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J",
|
||||
"K", "L", "M", "N", "O", "P", "Q", "R", "S", "T",
|
||||
"U", "V", "W", "X", "Y", "Z"
|
||||
};
|
||||
namespace {
|
||||
void DrawResults(cv::Mat &frame,
|
||||
const std::vector<cv::Rect> &vehicles,
|
||||
const std::vector<cv::Mat> &out_colors,
|
||||
const std::vector<cv::Mat> &out_types,
|
||||
const std::vector<cv::Rect> &plates,
|
||||
const std::vector<cv::Mat> &out_numbers) {
|
||||
CV_Assert(vehicles.size() == out_colors.size());
|
||||
CV_Assert(vehicles.size() == out_types.size());
|
||||
CV_Assert(plates.size() == out_numbers.size());
|
||||
|
||||
for (auto it = vehicles.begin(); it != vehicles.end(); ++it) {
|
||||
const auto idx = std::distance(vehicles.begin(), it);
|
||||
const auto &rc = *it;
|
||||
|
||||
const float *colors_data = out_colors[idx].ptr<float>();
|
||||
const float *types_data = out_types [idx].ptr<float>();
|
||||
const auto color_id = std::max_element(colors_data, colors_data + 7) - colors_data;
|
||||
const auto type_id = std::max_element(types_data, types_data + 4) - types_data;
|
||||
|
||||
const int ATTRIB_OFFSET = 25;
|
||||
cv::rectangle(frame, rc, {0, 255, 0}, 4);
|
||||
cv::putText(frame, labels::colors[color_id],
|
||||
cv::Point(rc.x + 5, rc.y + ATTRIB_OFFSET),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL,
|
||||
1,
|
||||
cv::Scalar(255, 0, 0));
|
||||
cv::putText(frame, labels::types[type_id],
|
||||
cv::Point(rc.x + 5, rc.y + ATTRIB_OFFSET * 2),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL,
|
||||
1,
|
||||
cv::Scalar(255, 0, 0));
|
||||
}
|
||||
|
||||
for (auto it = plates.begin(); it != plates.end(); ++it) {
|
||||
const int MAX_LICENSE = 88;
|
||||
const int LPR_OFFSET = 50;
|
||||
|
||||
const auto &rc = *it;
|
||||
const auto idx = std::distance(plates.begin(), it);
|
||||
|
||||
std::string result;
|
||||
const auto *lpr_data = out_numbers[idx].ptr<float>();
|
||||
for (int i = 0; i < MAX_LICENSE; i++) {
|
||||
if (lpr_data[i] == -1) break;
|
||||
result += labels::license_text[static_cast<size_t>(lpr_data[i])];
|
||||
}
|
||||
|
||||
const int y_pos = std::max(0, rc.y + rc.height - LPR_OFFSET);
|
||||
cv::rectangle(frame, rc, {0, 0, 255}, 4);
|
||||
cv::putText(frame, result,
|
||||
cv::Point(rc.x, y_pos),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL,
|
||||
1,
|
||||
cv::Scalar(0, 0, 255));
|
||||
}
|
||||
}
|
||||
|
||||
void DrawFPS(cv::Mat &frame, std::size_t n, double fps) {
|
||||
std::ostringstream out;
|
||||
out << "FRAME " << n << ": "
|
||||
<< std::fixed << std::setprecision(2) << fps
|
||||
<< " FPS (AVG)";
|
||||
cv::putText(frame, out.str(),
|
||||
cv::Point(0, frame.rows),
|
||||
cv::FONT_HERSHEY_SIMPLEX,
|
||||
1,
|
||||
cv::Scalar(0, 0, 0),
|
||||
2);
|
||||
}
|
||||
} // anonymous namespace
|
||||
} // namespace labels
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
cv::CommandLineParser cmd(argc, argv, keys);
|
||||
cmd.about(about);
|
||||
if (cmd.has("help")) {
|
||||
cmd.printMessage();
|
||||
return 0;
|
||||
}
|
||||
const std::string input = cmd.get<std::string>("input");
|
||||
const bool no_show = cmd.get<bool>("pure");
|
||||
|
||||
cv::GComputation pp([]() {
|
||||
cv::GMat in;
|
||||
cv::GMat detections = cv::gapi::infer<custom::VehicleLicenseDetector>(in);
|
||||
cv::GArray<cv::Rect> vehicles;
|
||||
cv::GArray<cv::Rect> plates;
|
||||
std::tie(vehicles, plates) = custom::ProcessDetections::on(detections, in);
|
||||
cv::GArray<cv::GMat> colors;
|
||||
cv::GArray<cv::GMat> types;
|
||||
std::tie(colors, types) = cv::gapi::infer<custom::VehicleAttributes>(vehicles, in);
|
||||
cv::GArray<cv::GMat> numbers = cv::gapi::infer<custom::LPR>(plates, in);
|
||||
cv::GMat frame = cv::gapi::copy(in); // pass-through the input frame
|
||||
return cv::GComputation(cv::GIn(in),
|
||||
cv::GOut(frame, vehicles, colors, types, plates, numbers));
|
||||
});
|
||||
|
||||
// Note: it might be very useful to have dimensions loaded at this point!
|
||||
auto det_net = cv::gapi::ie::Params<custom::VehicleLicenseDetector> {
|
||||
cmd.get<std::string>("detm"), // path to topology IR
|
||||
cmd.get<std::string>("detw"), // path to weights
|
||||
cmd.get<std::string>("detd"), // device specifier
|
||||
};
|
||||
|
||||
auto attr_net = cv::gapi::ie::Params<custom::VehicleAttributes> {
|
||||
cmd.get<std::string>("vehm"), // path to topology IR
|
||||
cmd.get<std::string>("vehw"), // path to weights
|
||||
cmd.get<std::string>("vehd"), // device specifier
|
||||
}.cfgOutputLayers({ "color", "type" });
|
||||
|
||||
// Fill a special LPR input (seq_ind) with a predefined value
|
||||
// First element is 0.f, the rest 87 are 1.f
|
||||
const std::vector<int> lpr_seq_dims = {88,1};
|
||||
cv::Mat lpr_seq(lpr_seq_dims, CV_32F, cv::Scalar(1.f));
|
||||
lpr_seq.ptr<float>()[0] = 0.f;
|
||||
auto lpr_net = cv::gapi::ie::Params<custom::LPR> {
|
||||
cmd.get<std::string>("lprm"), // path to topology IR
|
||||
cmd.get<std::string>("lprw"), // path to weights
|
||||
cmd.get<std::string>("lprd"), // device specifier
|
||||
}.constInput("seq_ind", lpr_seq);
|
||||
|
||||
auto kernels = cv::gapi::kernels<custom::OCVProcessDetections>();
|
||||
auto networks = cv::gapi::networks(det_net, attr_net, lpr_net);
|
||||
|
||||
Avg avg;
|
||||
cv::Mat frame;
|
||||
std::vector<cv::Rect> vehicles, plates;
|
||||
std::vector<cv::Mat> out_colors;
|
||||
std::vector<cv::Mat> out_types;
|
||||
std::vector<cv::Mat> out_numbers;
|
||||
std::size_t frames = 0u;
|
||||
|
||||
std::cout << "Reading " << input << std::endl;
|
||||
|
||||
if (cmd.get<bool>("ser")) {
|
||||
std::cout << "Going serial..." << std::endl;
|
||||
cv::VideoCapture cap(input);
|
||||
|
||||
auto cc = pp.compile(cv::GMatDesc{CV_8U,3,cv::Size(1920,1080)},
|
||||
cv::compile_args(kernels, networks));
|
||||
|
||||
avg.start();
|
||||
while (cv::waitKey(1) < 0) {
|
||||
cap >> frame;
|
||||
if (frame.empty()) break;
|
||||
|
||||
cc(cv::gin(frame),
|
||||
cv::gout(frame, vehicles, out_colors, out_types, plates, out_numbers));
|
||||
frames++;
|
||||
labels::DrawResults(frame, vehicles, out_colors, out_types, plates, out_numbers);
|
||||
labels::DrawFPS(frame, frames, avg.fps(frames));
|
||||
if (!no_show) cv::imshow("Out", frame);
|
||||
}
|
||||
} else {
|
||||
std::cout << "Going pipelined..." << std::endl;
|
||||
|
||||
auto cc = pp.compileStreaming(cv::GMatDesc{CV_8U,3,cv::Size(1920,1080)},
|
||||
cv::compile_args(kernels, networks));
|
||||
|
||||
cc.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
|
||||
|
||||
avg.start();
|
||||
cc.start();
|
||||
|
||||
// Implement different execution policies depending on the display option
|
||||
// for the best performance.
|
||||
while (cc.running()) {
|
||||
auto out_vector = cv::gout(frame, vehicles, out_colors, out_types, plates, out_numbers);
|
||||
if (no_show) {
|
||||
// This is purely a video processing. No need to balance with UI rendering.
|
||||
// Use a blocking pull() to obtain data. Break the loop if the stream is over.
|
||||
if (!cc.pull(std::move(out_vector)))
|
||||
break;
|
||||
} else if (!cc.try_pull(std::move(out_vector))) {
|
||||
// Use a non-blocking try_pull() to obtain data.
|
||||
// If there's no data, let UI refresh (and handle keypress)
|
||||
if (cv::waitKey(1) >= 0) break;
|
||||
else continue;
|
||||
}
|
||||
// At this point we have data for sure (obtained in either blocking or non-blocking way).
|
||||
frames++;
|
||||
labels::DrawResults(frame, vehicles, out_colors, out_types, plates, out_numbers);
|
||||
labels::DrawFPS(frame, frames, avg.fps(frames));
|
||||
if (!no_show) cv::imshow("Out", frame);
|
||||
}
|
||||
cc.stop();
|
||||
}
|
||||
std::cout << "Processed " << frames << " frames in " << avg.elapsed() << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
int main()
|
||||
{
|
||||
std::cerr << "This tutorial code requires G-API module "
|
||||
"with Inference Engine backend to run"
|
||||
<< std::endl;
|
||||
return 1;
|
||||
}
|
||||
#endif // HAVE_OPECV_GAPI
|
Reference in New Issue
Block a user