initial commit

This commit is contained in:
Joachim
2020-03-23 11:48:41 +01:00
commit fce6dc35b4
6434 changed files with 2823345 additions and 0 deletions

View File

@ -0,0 +1,905 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level
// directory of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019 Intel Corporation
#include "opencv2/opencv_modules.hpp"
#if defined(HAVE_OPENCV_GAPI)
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/fluid/core.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp> // windows
namespace config
{
constexpr char kWinFaceBeautification[] = "FaceBeautificator";
constexpr char kWinInput[] = "Input";
constexpr char kParserAbout[] =
"Use this script to run the face beautification algorithm with G-API.";
constexpr char kParserOptions[] =
"{ help h || print the help message. }"
"{ facepath f || a path to a Face detection model file (.xml).}"
"{ facedevice |GPU| the face detection computation device.}"
"{ landmpath l || a path to a Landmarks detection model file (.xml).}"
"{ landmdevice |CPU| the landmarks detection computation device.}"
"{ input i || a path to an input. Skip to capture from a camera.}"
"{ boxes b |false| set true to draw face Boxes in the \"Input\" window.}"
"{ landmarks m |false| set true to draw landMarks in the \"Input\" window.}"
"{ streaming s |true| set false to disable stream pipelining.}"
"{ performance p |false| set true to disable output displaying.}";
const cv::Scalar kClrWhite (255, 255, 255);
const cv::Scalar kClrGreen ( 0, 255, 0);
const cv::Scalar kClrYellow( 0, 255, 255);
constexpr float kConfThresh = 0.7f;
const cv::Size kGKernelSize(5, 5);
constexpr double kGSigma = 0.0;
constexpr int kBSize = 9;
constexpr double kBSigmaCol = 30.0;
constexpr double kBSigmaSp = 30.0;
constexpr int kUnshSigma = 3;
constexpr float kUnshStrength = 0.7f;
constexpr int kAngDelta = 1;
constexpr bool kClosedLine = true;
} // namespace config
namespace
{
//! [vec_ROI]
using VectorROI = std::vector<cv::Rect>;
//! [vec_ROI]
using GArrayROI = cv::GArray<cv::Rect>;
using Contour = std::vector<cv::Point>;
using Landmarks = std::vector<cv::Point>;
// Wrapper function
template<typename Tp> inline int toIntRounded(const Tp x)
{
return static_cast<int>(std::lround(x));
}
//! [toDbl]
template<typename Tp> inline double toDouble(const Tp x)
{
return static_cast<double>(x);
}
//! [toDbl]
struct Avg {
struct Elapsed {
explicit Elapsed(double ms) : ss(ms / 1000.),
mm(toIntRounded(ss / 60)) {}
const double ss;
const int mm;
};
using MS = std::chrono::duration<double, std::ratio<1, 1000>>;
using TS = std::chrono::time_point<std::chrono::high_resolution_clock>;
TS started;
void start() { started = now(); }
TS now() const { return std::chrono::high_resolution_clock::now(); }
double tick() const { return std::chrono::duration_cast<MS>(now() - started).count(); }
Elapsed elapsed() const { return Elapsed{tick()}; }
double fps(std::size_t n) const { return static_cast<double>(n) / (tick() / 1000.); }
};
std::ostream& operator<<(std::ostream &os, const Avg::Elapsed &e) {
os << e.mm << ':' << (e.ss - 60*e.mm);
return os;
}
std::string getWeightsPath(const std::string &mdlXMLPath) // mdlXMLPath =
// "The/Full/Path.xml"
{
size_t size = mdlXMLPath.size();
CV_Assert(mdlXMLPath.substr(size - 4, size) // The last 4 symbols
== ".xml"); // must be ".xml"
std::string mdlBinPath(mdlXMLPath);
return mdlBinPath.replace(size - 3, 3, "bin"); // return
// "The/Full/Path.bin"
}
} // anonymous namespace
namespace custom
{
using TplPtsFaceElements_Jaw = std::tuple<cv::GArray<Landmarks>,
cv::GArray<Contour>>;
// Wrapper-functions
inline int getLineInclinationAngleDegrees(const cv::Point &ptLeft,
const cv::Point &ptRight);
inline Contour getForeheadEllipse(const cv::Point &ptJawLeft,
const cv::Point &ptJawRight,
const cv::Point &ptJawMiddle);
inline Contour getEyeEllipse(const cv::Point &ptLeft,
const cv::Point &ptRight);
inline Contour getPatchedEllipse(const cv::Point &ptLeft,
const cv::Point &ptRight,
const cv::Point &ptUp,
const cv::Point &ptDown);
// Networks
//! [net_decl]
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face_detector");
G_API_NET(LandmDetector, <cv::GMat(cv::GMat)>, "landm_detector");
//! [net_decl]
// Function kernels
G_TYPED_KERNEL(GBilatFilter, <cv::GMat(cv::GMat,int,double,double)>,
"custom.faceb12n.bilateralFilter")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, int,double,double)
{
return in;
}
};
G_TYPED_KERNEL(GLaplacian, <cv::GMat(cv::GMat,int)>,
"custom.faceb12n.Laplacian")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, int)
{
return in;
}
};
G_TYPED_KERNEL(GFillPolyGContours, <cv::GMat(cv::GMat,cv::GArray<Contour>)>,
"custom.faceb12n.fillPolyGContours")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc)
{
return in.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL(GPolyLines, <cv::GMat(cv::GMat,cv::GArray<Contour>,bool,
cv::Scalar)>,
"custom.faceb12n.polyLines")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc,bool,cv::Scalar)
{
return in;
}
};
G_TYPED_KERNEL(GRectangle, <cv::GMat(cv::GMat,GArrayROI,cv::Scalar)>,
"custom.faceb12n.rectangle")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc,cv::Scalar)
{
return in;
}
};
G_TYPED_KERNEL(GFacePostProc, <GArrayROI(cv::GMat,cv::GMat,float)>,
"custom.faceb12n.faceDetectPostProc")
{
static cv::GArrayDesc outMeta(const cv::GMatDesc&,const cv::GMatDesc&,float)
{
return cv::empty_array_desc();
}
};
G_TYPED_KERNEL_M(GLandmPostProc, <TplPtsFaceElements_Jaw(cv::GArray<cv::GMat>,
GArrayROI)>,
"custom.faceb12n.landmDetectPostProc")
{
static std::tuple<cv::GArrayDesc,cv::GArrayDesc> outMeta(
const cv::GArrayDesc&,const cv::GArrayDesc&)
{
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
}
};
//! [kern_m_decl]
using TplFaces_FaceElements = std::tuple<cv::GArray<Contour>, cv::GArray<Contour>>;
G_TYPED_KERNEL_M(GGetContours, <TplFaces_FaceElements (cv::GArray<Landmarks>, cv::GArray<Contour>)>,
"custom.faceb12n.getContours")
{
static std::tuple<cv::GArrayDesc,cv::GArrayDesc> outMeta(const cv::GArrayDesc&,const cv::GArrayDesc&)
{
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
}
};
//! [kern_m_decl]
// OCV_Kernels
// This kernel applies Bilateral filter to an input src with default
// "cv::bilateralFilter" border argument
GAPI_OCV_KERNEL(GCPUBilateralFilter, custom::GBilatFilter)
{
static void run(const cv::Mat &src,
const int diameter,
const double sigmaColor,
const double sigmaSpace,
cv::Mat &out)
{
cv::bilateralFilter(src, out, diameter, sigmaColor, sigmaSpace);
}
};
// This kernel applies Laplace operator to an input src with default
// "cv::Laplacian" arguments
GAPI_OCV_KERNEL(GCPULaplacian, custom::GLaplacian)
{
static void run(const cv::Mat &src,
const int ddepth,
cv::Mat &out)
{
cv::Laplacian(src, out, ddepth);
}
};
// This kernel draws given white filled contours "cnts" on a clear Mat "out"
// (defined by a Scalar(0)) with standard "cv::fillPoly" arguments.
// It should be used to create a mask.
// The input Mat seems unused inside the function "run", but it is used deeper
// in the kernel to define an output size.
GAPI_OCV_KERNEL(GCPUFillPolyGContours, custom::GFillPolyGContours)
{
static void run(const cv::Mat &,
const std::vector<Contour> &cnts,
cv::Mat &out)
{
out = cv::Scalar(0);
cv::fillPoly(out, cnts, config::kClrWhite);
}
};
// This kernel draws given contours on an input src with default "cv::polylines"
// arguments
GAPI_OCV_KERNEL(GCPUPolyLines, custom::GPolyLines)
{
static void run(const cv::Mat &src,
const std::vector<Contour> &cnts,
const bool isClosed,
const cv::Scalar &color,
cv::Mat &out)
{
src.copyTo(out);
cv::polylines(out, cnts, isClosed, color);
}
};
// This kernel draws given rectangles on an input src with default
// "cv::rectangle" arguments
GAPI_OCV_KERNEL(GCPURectangle, custom::GRectangle)
{
static void run(const cv::Mat &src,
const VectorROI &vctFaceBoxes,
const cv::Scalar &color,
cv::Mat &out)
{
src.copyTo(out);
for (const cv::Rect &box : vctFaceBoxes)
{
cv::rectangle(out, box, color);
}
}
};
// A face detector outputs a blob with the shape: [1, 1, N, 7], where N is
// the number of detected bounding boxes. Structure of an output for every
// detected face is the following:
// [image_id, label, conf, x_min, y_min, x_max, y_max], all the seven elements
// are floating point. For more details please visit:
// https://github.com/opencv/open_model_zoo/blob/master/intel_models/face-detection-adas-0001
// This kernel is the face detection output blob parsing that returns a vector
// of detected faces' rects:
//! [fd_pp]
GAPI_OCV_KERNEL(GCPUFacePostProc, GFacePostProc)
{
static void run(const cv::Mat &inDetectResult,
const cv::Mat &inFrame,
const float faceConfThreshold,
VectorROI &outFaces)
{
const int kObjectSize = 7;
const int imgCols = inFrame.size().width;
const int imgRows = inFrame.size().height;
const cv::Rect borders({0, 0}, inFrame.size());
outFaces.clear();
const int numOfDetections = inDetectResult.size[2];
const float *data = inDetectResult.ptr<float>();
for (int i = 0; i < numOfDetections; i++)
{
const float faceId = data[i * kObjectSize + 0];
if (faceId < 0.f) // indicates the end of detections
{
break;
}
const float faceConfidence = data[i * kObjectSize + 2];
// We can cut detections by the `conf` field
// to avoid mistakes of the detector.
if (faceConfidence > faceConfThreshold)
{
const float left = data[i * kObjectSize + 3];
const float top = data[i * kObjectSize + 4];
const float right = data[i * kObjectSize + 5];
const float bottom = data[i * kObjectSize + 6];
// These are normalized coordinates and are between 0 and 1;
// to get the real pixel coordinates we should multiply it by
// the image sizes respectively to the directions:
cv::Point tl(toIntRounded(left * imgCols),
toIntRounded(top * imgRows));
cv::Point br(toIntRounded(right * imgCols),
toIntRounded(bottom * imgRows));
outFaces.push_back(cv::Rect(tl, br) & borders);
}
}
}
};
//! [fd_pp]
// This kernel is the facial landmarks detection output Mat parsing for every
// detected face; returns a tuple containing a vector of vectors of
// face elements' Points and a vector of vectors of jaw's Points:
// There are 35 landmarks given by the default detector for each face
// in a frame; the first 18 of them are face elements (eyes, eyebrows,
// a nose, a mouth) and the last 17 - a jaw contour. The detector gives
// floating point values for landmarks' normed coordinates relatively
// to an input ROI (not the original frame).
// For more details please visit:
// https://github.com/opencv/open_model_zoo/blob/master/intel_models/facial-landmarks-35-adas-0002
GAPI_OCV_KERNEL(GCPULandmPostProc, GLandmPostProc)
{
static void run(const std::vector<cv::Mat> &vctDetectResults,
const VectorROI &vctRects,
std::vector<Landmarks> &vctPtsFaceElems,
std::vector<Contour> &vctCntJaw)
{
static constexpr int kNumFaceElems = 18;
static constexpr int kNumTotal = 35;
const size_t numFaces = vctRects.size();
CV_Assert(vctPtsFaceElems.size() == 0ul);
CV_Assert(vctCntJaw.size() == 0ul);
vctPtsFaceElems.reserve(numFaces);
vctCntJaw.reserve(numFaces);
Landmarks ptsFaceElems;
Contour cntJaw;
ptsFaceElems.reserve(kNumFaceElems);
cntJaw.reserve(kNumTotal - kNumFaceElems);
for (size_t i = 0; i < numFaces; i++)
{
const float *data = vctDetectResults[i].ptr<float>();
// The face elements points:
ptsFaceElems.clear();
for (int j = 0; j < kNumFaceElems * 2; j += 2)
{
cv::Point pt = cv::Point(toIntRounded(data[j] * vctRects[i].width),
toIntRounded(data[j+1] * vctRects[i].height)) + vctRects[i].tl();
ptsFaceElems.push_back(pt);
}
vctPtsFaceElems.push_back(ptsFaceElems);
// The jaw contour points:
cntJaw.clear();
for(int j = kNumFaceElems * 2; j < kNumTotal * 2; j += 2)
{
cv::Point pt = cv::Point(toIntRounded(data[j] * vctRects[i].width),
toIntRounded(data[j+1] * vctRects[i].height)) + vctRects[i].tl();
cntJaw.push_back(pt);
}
vctCntJaw.push_back(cntJaw);
}
}
};
// This kernel is the facial landmarks detection post-processing for every face
// detected before; output is a tuple of vectors of detected face contours and
// facial elements contours:
//! [ld_pp_cnts]
//! [kern_m_impl]
GAPI_OCV_KERNEL(GCPUGetContours, GGetContours)
{
static void run(const std::vector<Landmarks> &vctPtsFaceElems, // 18 landmarks of the facial elements
const std::vector<Contour> &vctCntJaw, // 17 landmarks of a jaw
std::vector<Contour> &vctElemsContours,
std::vector<Contour> &vctFaceContours)
{
//! [kern_m_impl]
size_t numFaces = vctCntJaw.size();
CV_Assert(numFaces == vctPtsFaceElems.size());
CV_Assert(vctElemsContours.size() == 0ul);
CV_Assert(vctFaceContours.size() == 0ul);
// vctFaceElemsContours will store all the face elements' contours found
// in an input image, namely 4 elements (two eyes, nose, mouth) for every detected face:
vctElemsContours.reserve(numFaces * 4);
// vctFaceElemsContours will store all the faces' contours found in an input image:
vctFaceContours.reserve(numFaces);
Contour cntFace, cntLeftEye, cntRightEye, cntNose, cntMouth;
cntNose.reserve(4);
for (size_t i = 0ul; i < numFaces; i++)
{
// The face elements contours
// A left eye:
// Approximating the lower eye contour by half-ellipse (using eye points) and storing in cntLeftEye:
cntLeftEye = getEyeEllipse(vctPtsFaceElems[i][1], vctPtsFaceElems[i][0]);
// Pushing the left eyebrow clock-wise:
cntLeftEye.insert(cntLeftEye.end(), {vctPtsFaceElems[i][12], vctPtsFaceElems[i][13],
vctPtsFaceElems[i][14]});
// A right eye:
// Approximating the lower eye contour by half-ellipse (using eye points) and storing in vctRightEye:
cntRightEye = getEyeEllipse(vctPtsFaceElems[i][2], vctPtsFaceElems[i][3]);
// Pushing the right eyebrow clock-wise:
cntRightEye.insert(cntRightEye.end(), {vctPtsFaceElems[i][15], vctPtsFaceElems[i][16],
vctPtsFaceElems[i][17]});
// A nose:
// Storing the nose points clock-wise
cntNose.clear();
cntNose.insert(cntNose.end(), {vctPtsFaceElems[i][4], vctPtsFaceElems[i][7],
vctPtsFaceElems[i][5], vctPtsFaceElems[i][6]});
// A mouth:
// Approximating the mouth contour by two half-ellipses (using mouth points) and storing in vctMouth:
cntMouth = getPatchedEllipse(vctPtsFaceElems[i][8], vctPtsFaceElems[i][9],
vctPtsFaceElems[i][10], vctPtsFaceElems[i][11]);
// Storing all the elements in a vector:
vctElemsContours.insert(vctElemsContours.end(), {cntLeftEye, cntRightEye, cntNose, cntMouth});
// The face contour:
// Approximating the forehead contour by half-ellipse (using jaw points) and storing in vctFace:
cntFace = getForeheadEllipse(vctCntJaw[i][0], vctCntJaw[i][16], vctCntJaw[i][8]);
// The ellipse is drawn clock-wise, but jaw contour points goes vice versa, so it's necessary to push
// cntJaw from the end to the begin using a reverse iterator:
std::copy(vctCntJaw[i].crbegin(), vctCntJaw[i].crend(), std::back_inserter(cntFace));
// Storing the face contour in another vector:
vctFaceContours.push_back(cntFace);
}
}
};
//! [ld_pp_cnts]
// GAPI subgraph functions
inline cv::GMat unsharpMask(const cv::GMat &src,
const int sigma,
const float strength);
inline cv::GMat mask3C(const cv::GMat &src,
const cv::GMat &mask);
} // namespace custom
// Functions implementation:
// Returns an angle (in degrees) between a line given by two Points and
// the horison. Note that the result depends on the arguments order:
//! [ld_pp_incl]
inline int custom::getLineInclinationAngleDegrees(const cv::Point &ptLeft, const cv::Point &ptRight)
{
const cv::Point residual = ptRight - ptLeft;
if (residual.y == 0 && residual.x == 0)
return 0;
else
return toIntRounded(atan2(toDouble(residual.y), toDouble(residual.x)) * 180.0 / CV_PI);
}
//! [ld_pp_incl]
// Approximates a forehead by half-ellipse using jaw points and some geometry
// and then returns points of the contour; "capacity" is used to reserve enough
// memory as there will be other points inserted.
//! [ld_pp_fhd]
inline Contour custom::getForeheadEllipse(const cv::Point &ptJawLeft,
const cv::Point &ptJawRight,
const cv::Point &ptJawLower)
{
Contour cntForehead;
// The point amid the top two points of a jaw:
const cv::Point ptFaceCenter((ptJawLeft + ptJawRight) / 2);
// This will be the center of the ellipse.
// The angle between the jaw and the vertical:
const int angFace = getLineInclinationAngleDegrees(ptJawLeft, ptJawRight);
// This will be the inclination of the ellipse
// Counting the half-axis of the ellipse:
const double jawWidth = cv::norm(ptJawLeft - ptJawRight);
// A forehead width equals the jaw width, and we need a half-axis:
const int axisX = toIntRounded(jawWidth / 2.0);
const double jawHeight = cv::norm(ptFaceCenter - ptJawLower);
// According to research, in average a forehead is approximately 2/3 of
// a jaw:
const int axisY = toIntRounded(jawHeight * 2 / 3.0);
// We need the upper part of an ellipse:
static constexpr int kAngForeheadStart = 180;
static constexpr int kAngForeheadEnd = 360;
cv::ellipse2Poly(ptFaceCenter, cv::Size(axisX, axisY), angFace, kAngForeheadStart, kAngForeheadEnd,
config::kAngDelta, cntForehead);
return cntForehead;
}
//! [ld_pp_fhd]
// Approximates the lower eye contour by half-ellipse using eye points and some
// geometry and then returns points of the contour.
//! [ld_pp_eye]
inline Contour custom::getEyeEllipse(const cv::Point &ptLeft, const cv::Point &ptRight)
{
Contour cntEyeBottom;
const cv::Point ptEyeCenter((ptRight + ptLeft) / 2);
const int angle = getLineInclinationAngleDegrees(ptLeft, ptRight);
const int axisX = toIntRounded(cv::norm(ptRight - ptLeft) / 2.0);
// According to research, in average a Y axis of an eye is approximately
// 1/3 of an X one.
const int axisY = axisX / 3;
// We need the lower part of an ellipse:
static constexpr int kAngEyeStart = 0;
static constexpr int kAngEyeEnd = 180;
cv::ellipse2Poly(ptEyeCenter, cv::Size(axisX, axisY), angle, kAngEyeStart, kAngEyeEnd, config::kAngDelta,
cntEyeBottom);
return cntEyeBottom;
}
//! [ld_pp_eye]
//This function approximates an object (a mouth) by two half-ellipses using
// 4 points of the axes' ends and then returns points of the contour:
inline Contour custom::getPatchedEllipse(const cv::Point &ptLeft,
const cv::Point &ptRight,
const cv::Point &ptUp,
const cv::Point &ptDown)
{
// Shared characteristics for both half-ellipses:
const cv::Point ptMouthCenter((ptLeft + ptRight) / 2);
const int angMouth = getLineInclinationAngleDegrees(ptLeft, ptRight);
const int axisX = toIntRounded(cv::norm(ptRight - ptLeft) / 2.0);
// The top half-ellipse:
Contour cntMouthTop;
const int axisYTop = toIntRounded(cv::norm(ptMouthCenter - ptUp));
// We need the upper part of an ellipse:
static constexpr int angTopStart = 180;
static constexpr int angTopEnd = 360;
cv::ellipse2Poly(ptMouthCenter, cv::Size(axisX, axisYTop), angMouth, angTopStart, angTopEnd, config::kAngDelta, cntMouthTop);
// The bottom half-ellipse:
Contour cntMouth;
const int axisYBot = toIntRounded(cv::norm(ptMouthCenter - ptDown));
// We need the lower part of an ellipse:
static constexpr int angBotStart = 0;
static constexpr int angBotEnd = 180;
cv::ellipse2Poly(ptMouthCenter, cv::Size(axisX, axisYBot), angMouth, angBotStart, angBotEnd, config::kAngDelta, cntMouth);
// Pushing the upper part to vctOut
std::copy(cntMouthTop.cbegin(), cntMouthTop.cend(), std::back_inserter(cntMouth));
return cntMouth;
}
//! [unsh]
inline cv::GMat custom::unsharpMask(const cv::GMat &src,
const int sigma,
const float strength)
{
cv::GMat blurred = cv::gapi::medianBlur(src, sigma);
cv::GMat laplacian = custom::GLaplacian::on(blurred, CV_8U);
return (src - (laplacian * strength));
}
//! [unsh]
inline cv::GMat custom::mask3C(const cv::GMat &src,
const cv::GMat &mask)
{
std::tuple<cv::GMat,cv::GMat,cv::GMat> tplIn = cv::gapi::split3(src);
cv::GMat masked0 = cv::gapi::mask(std::get<0>(tplIn), mask);
cv::GMat masked1 = cv::gapi::mask(std::get<1>(tplIn), mask);
cv::GMat masked2 = cv::gapi::mask(std::get<2>(tplIn), mask);
return cv::gapi::merge3(masked0, masked1, masked2);
}
int main(int argc, char** argv)
{
cv::namedWindow(config::kWinFaceBeautification, cv::WINDOW_NORMAL);
cv::namedWindow(config::kWinInput, cv::WINDOW_NORMAL);
cv::CommandLineParser parser(argc, argv, config::kParserOptions);
parser.about(config::kParserAbout);
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
// Parsing input arguments
const std::string faceXmlPath = parser.get<std::string>("facepath");
const std::string faceBinPath = getWeightsPath(faceXmlPath);
const std::string faceDevice = parser.get<std::string>("facedevice");
const std::string landmXmlPath = parser.get<std::string>("landmpath");
const std::string landmBinPath = getWeightsPath(landmXmlPath);
const std::string landmDevice = parser.get<std::string>("landmdevice");
// Declaring a graph
// The version of a pipeline expression with a lambda-based
// constructor is used to keep all temporary objects in a dedicated scope.
//! [ppl]
cv::GComputation pipeline([=]()
{
//! [net_usg_fd]
cv::GMat gimgIn; // input
cv::GMat faceOut = cv::gapi::infer<custom::FaceDetector>(gimgIn);
//! [net_usg_fd]
GArrayROI garRects = custom::GFacePostProc::on(faceOut, gimgIn, config::kConfThresh); // post-proc
//! [net_usg_ld]
cv::GArray<cv::GMat> landmOut = cv::gapi::infer<custom::LandmDetector>(garRects, gimgIn);
//! [net_usg_ld]
cv::GArray<Landmarks> garElems; // |
cv::GArray<Contour> garJaws; // |output arrays
std::tie(garElems, garJaws) = custom::GLandmPostProc::on(landmOut, garRects); // post-proc
cv::GArray<Contour> garElsConts; // face elements
cv::GArray<Contour> garFaceConts; // whole faces
std::tie(garElsConts, garFaceConts) = custom::GGetContours::on(garElems, garJaws); // interpolation
//! [msk_ppline]
cv::GMat mskSharp = custom::GFillPolyGContours::on(gimgIn, garElsConts); // |
cv::GMat mskSharpG = cv::gapi::gaussianBlur(mskSharp, config::kGKernelSize, // |
config::kGSigma); // |
cv::GMat mskBlur = custom::GFillPolyGContours::on(gimgIn, garFaceConts); // |
cv::GMat mskBlurG = cv::gapi::gaussianBlur(mskBlur, config::kGKernelSize, // |
config::kGSigma); // |draw masks
// The first argument in mask() is Blur as we want to subtract from // |
// BlurG the next step: // |
cv::GMat mskBlurFinal = mskBlurG - cv::gapi::mask(mskBlurG, mskSharpG); // |
cv::GMat mskFacesGaussed = mskBlurFinal + mskSharpG; // |
cv::GMat mskFacesWhite = cv::gapi::threshold(mskFacesGaussed, 0, 255, cv::THRESH_BINARY); // |
cv::GMat mskNoFaces = cv::gapi::bitwise_not(mskFacesWhite); // |
//! [msk_ppline]
cv::GMat gimgBilat = custom::GBilatFilter::on(gimgIn, config::kBSize,
config::kBSigmaCol, config::kBSigmaSp);
cv::GMat gimgSharp = custom::unsharpMask(gimgIn, config::kUnshSigma,
config::kUnshStrength);
// Applying the masks
// Custom function mask3C() should be used instead of just gapi::mask()
// as mask() provides CV_8UC1 source only (and we have CV_8U3C)
cv::GMat gimgBilatMasked = custom::mask3C(gimgBilat, mskBlurFinal);
cv::GMat gimgSharpMasked = custom::mask3C(gimgSharp, mskSharpG);
cv::GMat gimgInMasked = custom::mask3C(gimgIn, mskNoFaces);
cv::GMat gimgBeautif = gimgBilatMasked + gimgSharpMasked + gimgInMasked;
return cv::GComputation(cv::GIn(gimgIn), cv::GOut(gimgBeautif,
cv::gapi::copy(gimgIn),
garFaceConts,
garElsConts,
garRects));
});
//! [ppl]
// Declaring IE params for networks
//! [net_param]
auto faceParams = cv::gapi::ie::Params<custom::FaceDetector>
{
/*std::string*/ faceXmlPath,
/*std::string*/ faceBinPath,
/*std::string*/ faceDevice
};
auto landmParams = cv::gapi::ie::Params<custom::LandmDetector>
{
/*std::string*/ landmXmlPath,
/*std::string*/ landmBinPath,
/*std::string*/ landmDevice
};
//! [net_param]
//! [netw]
auto networks = cv::gapi::networks(faceParams, landmParams);
//! [netw]
// Declaring custom and fluid kernels have been used:
//! [kern_pass_1]
auto customKernels = cv::gapi::kernels<custom::GCPUBilateralFilter,
custom::GCPULaplacian,
custom::GCPUFillPolyGContours,
custom::GCPUPolyLines,
custom::GCPURectangle,
custom::GCPUFacePostProc,
custom::GCPULandmPostProc,
custom::GCPUGetContours>();
auto kernels = cv::gapi::combine(cv::gapi::core::fluid::kernels(),
customKernels);
//! [kern_pass_1]
Avg avg;
size_t frames = 0;
// The flags for drawing/not drawing face boxes or/and landmarks in the
// \"Input\" window:
const bool flgBoxes = parser.get<bool>("boxes");
const bool flgLandmarks = parser.get<bool>("landmarks");
// The flag to involve stream pipelining:
const bool flgStreaming = parser.get<bool>("streaming");
// The flag to display the output images or not:
const bool flgPerformance = parser.get<bool>("performance");
// Now we are ready to compile the pipeline to a stream with specified
// kernels, networks and image format expected to process
if (flgStreaming == true)
{
//! [str_comp]
cv::GStreamingCompiled stream = pipeline.compileStreaming(cv::compile_args(kernels, networks));
//! [str_comp]
// Setting the source for the stream:
//! [str_src]
if (parser.has("input"))
{
stream.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(parser.get<cv::String>("input")));
}
//! [str_src]
else
{
stream.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(0));
}
// Declaring output variables
// Streaming:
cv::Mat imgShow;
cv::Mat imgBeautif;
std::vector<Contour> vctFaceConts, vctElsConts;
VectorROI vctRects;
if (flgPerformance == true)
{
auto out_vector = cv::gout(imgBeautif, imgShow, vctFaceConts,
vctElsConts, vctRects);
stream.start();
avg.start();
while (stream.running())
{
stream.pull(std::move(out_vector));
frames++;
}
}
else // flgPerformance == false
{
//! [str_loop]
auto out_vector = cv::gout(imgBeautif, imgShow, vctFaceConts,
vctElsConts, vctRects);
stream.start();
avg.start();
while (stream.running())
{
if (!stream.try_pull(std::move(out_vector)))
{
// Use a try_pull() to obtain data.
// If there's no data, let UI refresh (and handle keypress)
if (cv::waitKey(1) >= 0) break;
else continue;
}
frames++;
// Drawing face boxes and landmarks if necessary:
if (flgLandmarks == true)
{
cv::polylines(imgShow, vctFaceConts, config::kClosedLine,
config::kClrYellow);
cv::polylines(imgShow, vctElsConts, config::kClosedLine,
config::kClrYellow);
}
if (flgBoxes == true)
for (auto rect : vctRects)
cv::rectangle(imgShow, rect, config::kClrGreen);
cv::imshow(config::kWinInput, imgShow);
cv::imshow(config::kWinFaceBeautification, imgBeautif);
}
//! [str_loop]
}
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
}
else // serial mode:
{
//! [bef_cap]
#include <opencv2/videoio.hpp>
cv::GCompiled cc;
cv::VideoCapture cap;
if (parser.has("input"))
{
cap.open(parser.get<cv::String>("input"));
}
//! [bef_cap]
else if (!cap.open(0))
{
std::cout << "No input available" << std::endl;
return 1;
}
if (flgPerformance == true)
{
while (true)
{
cv::Mat img;
cv::Mat imgShow;
cv::Mat imgBeautif;
std::vector<Contour> vctFaceConts, vctElsConts;
VectorROI vctRects;
cap >> img;
if (img.empty())
{
break;
}
frames++;
if (!cc)
{
cc = pipeline.compile(cv::descr_of(img), cv::compile_args(kernels, networks));
avg.start();
}
cc(cv::gin(img), cv::gout(imgBeautif, imgShow, vctFaceConts,
vctElsConts, vctRects));
}
}
else // flgPerformance == false
{
//! [bef_loop]
while (cv::waitKey(1) < 0)
{
cv::Mat img;
cv::Mat imgShow;
cv::Mat imgBeautif;
std::vector<Contour> vctFaceConts, vctElsConts;
VectorROI vctRects;
cap >> img;
if (img.empty())
{
cv::waitKey();
break;
}
frames++;
//! [apply]
pipeline.apply(cv::gin(img), cv::gout(imgBeautif, imgShow,
vctFaceConts,
vctElsConts, vctRects),
cv::compile_args(kernels, networks));
//! [apply]
if (frames == 1)
{
// Start timer only after 1st frame processed -- compilation
// happens on-the-fly here
avg.start();
}
// Drawing face boxes and landmarks if necessary:
if (flgLandmarks == true)
{
cv::polylines(imgShow, vctFaceConts, config::kClosedLine,
config::kClrYellow);
cv::polylines(imgShow, vctElsConts, config::kClosedLine,
config::kClrYellow);
}
if (flgBoxes == true)
for (auto rect : vctRects)
cv::rectangle(imgShow, rect, config::kClrGreen);
cv::imshow(config::kWinInput, imgShow);
cv::imshow(config::kWinFaceBeautification, imgBeautif);
}
}
//! [bef_loop]
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
}
return 0;
}
#else
#include <iostream>
int main()
{
std::cerr << "This tutorial code requires G-API module "
"with Inference Engine backend to run"
<< std::endl;
return 1;
}
#endif // HAVE_OPECV_GAPI