mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-14 18:50:49 +08:00
initial commit
This commit is contained in:
@ -0,0 +1,905 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level
|
||||
// directory of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2018-2019 Intel Corporation
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#if defined(HAVE_OPENCV_GAPI)
|
||||
|
||||
#include <opencv2/gapi.hpp>
|
||||
#include <opencv2/gapi/core.hpp>
|
||||
#include <opencv2/gapi/imgproc.hpp>
|
||||
#include <opencv2/gapi/fluid/core.hpp>
|
||||
#include <opencv2/gapi/infer.hpp>
|
||||
#include <opencv2/gapi/infer/ie.hpp>
|
||||
#include <opencv2/gapi/cpu/gcpukernel.hpp>
|
||||
#include <opencv2/gapi/streaming/cap.hpp>
|
||||
|
||||
#include <opencv2/highgui.hpp> // windows
|
||||
|
||||
namespace config
|
||||
{
|
||||
constexpr char kWinFaceBeautification[] = "FaceBeautificator";
|
||||
constexpr char kWinInput[] = "Input";
|
||||
constexpr char kParserAbout[] =
|
||||
"Use this script to run the face beautification algorithm with G-API.";
|
||||
constexpr char kParserOptions[] =
|
||||
"{ help h || print the help message. }"
|
||||
|
||||
"{ facepath f || a path to a Face detection model file (.xml).}"
|
||||
"{ facedevice |GPU| the face detection computation device.}"
|
||||
|
||||
"{ landmpath l || a path to a Landmarks detection model file (.xml).}"
|
||||
"{ landmdevice |CPU| the landmarks detection computation device.}"
|
||||
|
||||
"{ input i || a path to an input. Skip to capture from a camera.}"
|
||||
"{ boxes b |false| set true to draw face Boxes in the \"Input\" window.}"
|
||||
"{ landmarks m |false| set true to draw landMarks in the \"Input\" window.}"
|
||||
"{ streaming s |true| set false to disable stream pipelining.}"
|
||||
"{ performance p |false| set true to disable output displaying.}";
|
||||
|
||||
const cv::Scalar kClrWhite (255, 255, 255);
|
||||
const cv::Scalar kClrGreen ( 0, 255, 0);
|
||||
const cv::Scalar kClrYellow( 0, 255, 255);
|
||||
|
||||
constexpr float kConfThresh = 0.7f;
|
||||
|
||||
const cv::Size kGKernelSize(5, 5);
|
||||
constexpr double kGSigma = 0.0;
|
||||
constexpr int kBSize = 9;
|
||||
constexpr double kBSigmaCol = 30.0;
|
||||
constexpr double kBSigmaSp = 30.0;
|
||||
constexpr int kUnshSigma = 3;
|
||||
constexpr float kUnshStrength = 0.7f;
|
||||
constexpr int kAngDelta = 1;
|
||||
constexpr bool kClosedLine = true;
|
||||
} // namespace config
|
||||
|
||||
namespace
|
||||
{
|
||||
//! [vec_ROI]
|
||||
using VectorROI = std::vector<cv::Rect>;
|
||||
//! [vec_ROI]
|
||||
using GArrayROI = cv::GArray<cv::Rect>;
|
||||
using Contour = std::vector<cv::Point>;
|
||||
using Landmarks = std::vector<cv::Point>;
|
||||
|
||||
|
||||
// Wrapper function
|
||||
template<typename Tp> inline int toIntRounded(const Tp x)
|
||||
{
|
||||
return static_cast<int>(std::lround(x));
|
||||
}
|
||||
|
||||
//! [toDbl]
|
||||
template<typename Tp> inline double toDouble(const Tp x)
|
||||
{
|
||||
return static_cast<double>(x);
|
||||
}
|
||||
//! [toDbl]
|
||||
|
||||
struct Avg {
|
||||
struct Elapsed {
|
||||
explicit Elapsed(double ms) : ss(ms / 1000.),
|
||||
mm(toIntRounded(ss / 60)) {}
|
||||
const double ss;
|
||||
const int mm;
|
||||
};
|
||||
|
||||
using MS = std::chrono::duration<double, std::ratio<1, 1000>>;
|
||||
using TS = std::chrono::time_point<std::chrono::high_resolution_clock>;
|
||||
TS started;
|
||||
|
||||
void start() { started = now(); }
|
||||
TS now() const { return std::chrono::high_resolution_clock::now(); }
|
||||
double tick() const { return std::chrono::duration_cast<MS>(now() - started).count(); }
|
||||
Elapsed elapsed() const { return Elapsed{tick()}; }
|
||||
double fps(std::size_t n) const { return static_cast<double>(n) / (tick() / 1000.); }
|
||||
};
|
||||
std::ostream& operator<<(std::ostream &os, const Avg::Elapsed &e) {
|
||||
os << e.mm << ':' << (e.ss - 60*e.mm);
|
||||
return os;
|
||||
}
|
||||
|
||||
std::string getWeightsPath(const std::string &mdlXMLPath) // mdlXMLPath =
|
||||
// "The/Full/Path.xml"
|
||||
{
|
||||
size_t size = mdlXMLPath.size();
|
||||
CV_Assert(mdlXMLPath.substr(size - 4, size) // The last 4 symbols
|
||||
== ".xml"); // must be ".xml"
|
||||
std::string mdlBinPath(mdlXMLPath);
|
||||
return mdlBinPath.replace(size - 3, 3, "bin"); // return
|
||||
// "The/Full/Path.bin"
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
|
||||
namespace custom
|
||||
{
|
||||
using TplPtsFaceElements_Jaw = std::tuple<cv::GArray<Landmarks>,
|
||||
cv::GArray<Contour>>;
|
||||
|
||||
// Wrapper-functions
|
||||
inline int getLineInclinationAngleDegrees(const cv::Point &ptLeft,
|
||||
const cv::Point &ptRight);
|
||||
inline Contour getForeheadEllipse(const cv::Point &ptJawLeft,
|
||||
const cv::Point &ptJawRight,
|
||||
const cv::Point &ptJawMiddle);
|
||||
inline Contour getEyeEllipse(const cv::Point &ptLeft,
|
||||
const cv::Point &ptRight);
|
||||
inline Contour getPatchedEllipse(const cv::Point &ptLeft,
|
||||
const cv::Point &ptRight,
|
||||
const cv::Point &ptUp,
|
||||
const cv::Point &ptDown);
|
||||
|
||||
// Networks
|
||||
//! [net_decl]
|
||||
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face_detector");
|
||||
G_API_NET(LandmDetector, <cv::GMat(cv::GMat)>, "landm_detector");
|
||||
//! [net_decl]
|
||||
|
||||
// Function kernels
|
||||
G_TYPED_KERNEL(GBilatFilter, <cv::GMat(cv::GMat,int,double,double)>,
|
||||
"custom.faceb12n.bilateralFilter")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, int,double,double)
|
||||
{
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GLaplacian, <cv::GMat(cv::GMat,int)>,
|
||||
"custom.faceb12n.Laplacian")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, int)
|
||||
{
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GFillPolyGContours, <cv::GMat(cv::GMat,cv::GArray<Contour>)>,
|
||||
"custom.faceb12n.fillPolyGContours")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc)
|
||||
{
|
||||
return in.withType(CV_8U, 1);
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GPolyLines, <cv::GMat(cv::GMat,cv::GArray<Contour>,bool,
|
||||
cv::Scalar)>,
|
||||
"custom.faceb12n.polyLines")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc,bool,cv::Scalar)
|
||||
{
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GRectangle, <cv::GMat(cv::GMat,GArrayROI,cv::Scalar)>,
|
||||
"custom.faceb12n.rectangle")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc,cv::Scalar)
|
||||
{
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GFacePostProc, <GArrayROI(cv::GMat,cv::GMat,float)>,
|
||||
"custom.faceb12n.faceDetectPostProc")
|
||||
{
|
||||
static cv::GArrayDesc outMeta(const cv::GMatDesc&,const cv::GMatDesc&,float)
|
||||
{
|
||||
return cv::empty_array_desc();
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL_M(GLandmPostProc, <TplPtsFaceElements_Jaw(cv::GArray<cv::GMat>,
|
||||
GArrayROI)>,
|
||||
"custom.faceb12n.landmDetectPostProc")
|
||||
{
|
||||
static std::tuple<cv::GArrayDesc,cv::GArrayDesc> outMeta(
|
||||
const cv::GArrayDesc&,const cv::GArrayDesc&)
|
||||
{
|
||||
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
|
||||
}
|
||||
};
|
||||
|
||||
//! [kern_m_decl]
|
||||
using TplFaces_FaceElements = std::tuple<cv::GArray<Contour>, cv::GArray<Contour>>;
|
||||
G_TYPED_KERNEL_M(GGetContours, <TplFaces_FaceElements (cv::GArray<Landmarks>, cv::GArray<Contour>)>,
|
||||
"custom.faceb12n.getContours")
|
||||
{
|
||||
static std::tuple<cv::GArrayDesc,cv::GArrayDesc> outMeta(const cv::GArrayDesc&,const cv::GArrayDesc&)
|
||||
{
|
||||
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
|
||||
}
|
||||
};
|
||||
//! [kern_m_decl]
|
||||
|
||||
|
||||
// OCV_Kernels
|
||||
// This kernel applies Bilateral filter to an input src with default
|
||||
// "cv::bilateralFilter" border argument
|
||||
GAPI_OCV_KERNEL(GCPUBilateralFilter, custom::GBilatFilter)
|
||||
{
|
||||
static void run(const cv::Mat &src,
|
||||
const int diameter,
|
||||
const double sigmaColor,
|
||||
const double sigmaSpace,
|
||||
cv::Mat &out)
|
||||
{
|
||||
cv::bilateralFilter(src, out, diameter, sigmaColor, sigmaSpace);
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel applies Laplace operator to an input src with default
|
||||
// "cv::Laplacian" arguments
|
||||
GAPI_OCV_KERNEL(GCPULaplacian, custom::GLaplacian)
|
||||
{
|
||||
static void run(const cv::Mat &src,
|
||||
const int ddepth,
|
||||
cv::Mat &out)
|
||||
{
|
||||
cv::Laplacian(src, out, ddepth);
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel draws given white filled contours "cnts" on a clear Mat "out"
|
||||
// (defined by a Scalar(0)) with standard "cv::fillPoly" arguments.
|
||||
// It should be used to create a mask.
|
||||
// The input Mat seems unused inside the function "run", but it is used deeper
|
||||
// in the kernel to define an output size.
|
||||
GAPI_OCV_KERNEL(GCPUFillPolyGContours, custom::GFillPolyGContours)
|
||||
{
|
||||
static void run(const cv::Mat &,
|
||||
const std::vector<Contour> &cnts,
|
||||
cv::Mat &out)
|
||||
{
|
||||
out = cv::Scalar(0);
|
||||
cv::fillPoly(out, cnts, config::kClrWhite);
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel draws given contours on an input src with default "cv::polylines"
|
||||
// arguments
|
||||
GAPI_OCV_KERNEL(GCPUPolyLines, custom::GPolyLines)
|
||||
{
|
||||
static void run(const cv::Mat &src,
|
||||
const std::vector<Contour> &cnts,
|
||||
const bool isClosed,
|
||||
const cv::Scalar &color,
|
||||
cv::Mat &out)
|
||||
{
|
||||
src.copyTo(out);
|
||||
cv::polylines(out, cnts, isClosed, color);
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel draws given rectangles on an input src with default
|
||||
// "cv::rectangle" arguments
|
||||
GAPI_OCV_KERNEL(GCPURectangle, custom::GRectangle)
|
||||
{
|
||||
static void run(const cv::Mat &src,
|
||||
const VectorROI &vctFaceBoxes,
|
||||
const cv::Scalar &color,
|
||||
cv::Mat &out)
|
||||
{
|
||||
src.copyTo(out);
|
||||
for (const cv::Rect &box : vctFaceBoxes)
|
||||
{
|
||||
cv::rectangle(out, box, color);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// A face detector outputs a blob with the shape: [1, 1, N, 7], where N is
|
||||
// the number of detected bounding boxes. Structure of an output for every
|
||||
// detected face is the following:
|
||||
// [image_id, label, conf, x_min, y_min, x_max, y_max], all the seven elements
|
||||
// are floating point. For more details please visit:
|
||||
// https://github.com/opencv/open_model_zoo/blob/master/intel_models/face-detection-adas-0001
|
||||
// This kernel is the face detection output blob parsing that returns a vector
|
||||
// of detected faces' rects:
|
||||
//! [fd_pp]
|
||||
GAPI_OCV_KERNEL(GCPUFacePostProc, GFacePostProc)
|
||||
{
|
||||
static void run(const cv::Mat &inDetectResult,
|
||||
const cv::Mat &inFrame,
|
||||
const float faceConfThreshold,
|
||||
VectorROI &outFaces)
|
||||
{
|
||||
const int kObjectSize = 7;
|
||||
const int imgCols = inFrame.size().width;
|
||||
const int imgRows = inFrame.size().height;
|
||||
const cv::Rect borders({0, 0}, inFrame.size());
|
||||
outFaces.clear();
|
||||
const int numOfDetections = inDetectResult.size[2];
|
||||
const float *data = inDetectResult.ptr<float>();
|
||||
for (int i = 0; i < numOfDetections; i++)
|
||||
{
|
||||
const float faceId = data[i * kObjectSize + 0];
|
||||
if (faceId < 0.f) // indicates the end of detections
|
||||
{
|
||||
break;
|
||||
}
|
||||
const float faceConfidence = data[i * kObjectSize + 2];
|
||||
// We can cut detections by the `conf` field
|
||||
// to avoid mistakes of the detector.
|
||||
if (faceConfidence > faceConfThreshold)
|
||||
{
|
||||
const float left = data[i * kObjectSize + 3];
|
||||
const float top = data[i * kObjectSize + 4];
|
||||
const float right = data[i * kObjectSize + 5];
|
||||
const float bottom = data[i * kObjectSize + 6];
|
||||
// These are normalized coordinates and are between 0 and 1;
|
||||
// to get the real pixel coordinates we should multiply it by
|
||||
// the image sizes respectively to the directions:
|
||||
cv::Point tl(toIntRounded(left * imgCols),
|
||||
toIntRounded(top * imgRows));
|
||||
cv::Point br(toIntRounded(right * imgCols),
|
||||
toIntRounded(bottom * imgRows));
|
||||
outFaces.push_back(cv::Rect(tl, br) & borders);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
//! [fd_pp]
|
||||
|
||||
// This kernel is the facial landmarks detection output Mat parsing for every
|
||||
// detected face; returns a tuple containing a vector of vectors of
|
||||
// face elements' Points and a vector of vectors of jaw's Points:
|
||||
// There are 35 landmarks given by the default detector for each face
|
||||
// in a frame; the first 18 of them are face elements (eyes, eyebrows,
|
||||
// a nose, a mouth) and the last 17 - a jaw contour. The detector gives
|
||||
// floating point values for landmarks' normed coordinates relatively
|
||||
// to an input ROI (not the original frame).
|
||||
// For more details please visit:
|
||||
// https://github.com/opencv/open_model_zoo/blob/master/intel_models/facial-landmarks-35-adas-0002
|
||||
GAPI_OCV_KERNEL(GCPULandmPostProc, GLandmPostProc)
|
||||
{
|
||||
static void run(const std::vector<cv::Mat> &vctDetectResults,
|
||||
const VectorROI &vctRects,
|
||||
std::vector<Landmarks> &vctPtsFaceElems,
|
||||
std::vector<Contour> &vctCntJaw)
|
||||
{
|
||||
static constexpr int kNumFaceElems = 18;
|
||||
static constexpr int kNumTotal = 35;
|
||||
const size_t numFaces = vctRects.size();
|
||||
CV_Assert(vctPtsFaceElems.size() == 0ul);
|
||||
CV_Assert(vctCntJaw.size() == 0ul);
|
||||
vctPtsFaceElems.reserve(numFaces);
|
||||
vctCntJaw.reserve(numFaces);
|
||||
|
||||
Landmarks ptsFaceElems;
|
||||
Contour cntJaw;
|
||||
ptsFaceElems.reserve(kNumFaceElems);
|
||||
cntJaw.reserve(kNumTotal - kNumFaceElems);
|
||||
|
||||
for (size_t i = 0; i < numFaces; i++)
|
||||
{
|
||||
const float *data = vctDetectResults[i].ptr<float>();
|
||||
// The face elements points:
|
||||
ptsFaceElems.clear();
|
||||
for (int j = 0; j < kNumFaceElems * 2; j += 2)
|
||||
{
|
||||
cv::Point pt = cv::Point(toIntRounded(data[j] * vctRects[i].width),
|
||||
toIntRounded(data[j+1] * vctRects[i].height)) + vctRects[i].tl();
|
||||
ptsFaceElems.push_back(pt);
|
||||
}
|
||||
vctPtsFaceElems.push_back(ptsFaceElems);
|
||||
|
||||
// The jaw contour points:
|
||||
cntJaw.clear();
|
||||
for(int j = kNumFaceElems * 2; j < kNumTotal * 2; j += 2)
|
||||
{
|
||||
cv::Point pt = cv::Point(toIntRounded(data[j] * vctRects[i].width),
|
||||
toIntRounded(data[j+1] * vctRects[i].height)) + vctRects[i].tl();
|
||||
cntJaw.push_back(pt);
|
||||
}
|
||||
vctCntJaw.push_back(cntJaw);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel is the facial landmarks detection post-processing for every face
|
||||
// detected before; output is a tuple of vectors of detected face contours and
|
||||
// facial elements contours:
|
||||
//! [ld_pp_cnts]
|
||||
//! [kern_m_impl]
|
||||
GAPI_OCV_KERNEL(GCPUGetContours, GGetContours)
|
||||
{
|
||||
static void run(const std::vector<Landmarks> &vctPtsFaceElems, // 18 landmarks of the facial elements
|
||||
const std::vector<Contour> &vctCntJaw, // 17 landmarks of a jaw
|
||||
std::vector<Contour> &vctElemsContours,
|
||||
std::vector<Contour> &vctFaceContours)
|
||||
{
|
||||
//! [kern_m_impl]
|
||||
size_t numFaces = vctCntJaw.size();
|
||||
CV_Assert(numFaces == vctPtsFaceElems.size());
|
||||
CV_Assert(vctElemsContours.size() == 0ul);
|
||||
CV_Assert(vctFaceContours.size() == 0ul);
|
||||
// vctFaceElemsContours will store all the face elements' contours found
|
||||
// in an input image, namely 4 elements (two eyes, nose, mouth) for every detected face:
|
||||
vctElemsContours.reserve(numFaces * 4);
|
||||
// vctFaceElemsContours will store all the faces' contours found in an input image:
|
||||
vctFaceContours.reserve(numFaces);
|
||||
|
||||
Contour cntFace, cntLeftEye, cntRightEye, cntNose, cntMouth;
|
||||
cntNose.reserve(4);
|
||||
|
||||
for (size_t i = 0ul; i < numFaces; i++)
|
||||
{
|
||||
// The face elements contours
|
||||
|
||||
// A left eye:
|
||||
// Approximating the lower eye contour by half-ellipse (using eye points) and storing in cntLeftEye:
|
||||
cntLeftEye = getEyeEllipse(vctPtsFaceElems[i][1], vctPtsFaceElems[i][0]);
|
||||
// Pushing the left eyebrow clock-wise:
|
||||
cntLeftEye.insert(cntLeftEye.end(), {vctPtsFaceElems[i][12], vctPtsFaceElems[i][13],
|
||||
vctPtsFaceElems[i][14]});
|
||||
|
||||
// A right eye:
|
||||
// Approximating the lower eye contour by half-ellipse (using eye points) and storing in vctRightEye:
|
||||
cntRightEye = getEyeEllipse(vctPtsFaceElems[i][2], vctPtsFaceElems[i][3]);
|
||||
// Pushing the right eyebrow clock-wise:
|
||||
cntRightEye.insert(cntRightEye.end(), {vctPtsFaceElems[i][15], vctPtsFaceElems[i][16],
|
||||
vctPtsFaceElems[i][17]});
|
||||
|
||||
// A nose:
|
||||
// Storing the nose points clock-wise
|
||||
cntNose.clear();
|
||||
cntNose.insert(cntNose.end(), {vctPtsFaceElems[i][4], vctPtsFaceElems[i][7],
|
||||
vctPtsFaceElems[i][5], vctPtsFaceElems[i][6]});
|
||||
|
||||
// A mouth:
|
||||
// Approximating the mouth contour by two half-ellipses (using mouth points) and storing in vctMouth:
|
||||
cntMouth = getPatchedEllipse(vctPtsFaceElems[i][8], vctPtsFaceElems[i][9],
|
||||
vctPtsFaceElems[i][10], vctPtsFaceElems[i][11]);
|
||||
|
||||
// Storing all the elements in a vector:
|
||||
vctElemsContours.insert(vctElemsContours.end(), {cntLeftEye, cntRightEye, cntNose, cntMouth});
|
||||
|
||||
// The face contour:
|
||||
// Approximating the forehead contour by half-ellipse (using jaw points) and storing in vctFace:
|
||||
cntFace = getForeheadEllipse(vctCntJaw[i][0], vctCntJaw[i][16], vctCntJaw[i][8]);
|
||||
// The ellipse is drawn clock-wise, but jaw contour points goes vice versa, so it's necessary to push
|
||||
// cntJaw from the end to the begin using a reverse iterator:
|
||||
std::copy(vctCntJaw[i].crbegin(), vctCntJaw[i].crend(), std::back_inserter(cntFace));
|
||||
// Storing the face contour in another vector:
|
||||
vctFaceContours.push_back(cntFace);
|
||||
}
|
||||
}
|
||||
};
|
||||
//! [ld_pp_cnts]
|
||||
|
||||
// GAPI subgraph functions
|
||||
inline cv::GMat unsharpMask(const cv::GMat &src,
|
||||
const int sigma,
|
||||
const float strength);
|
||||
inline cv::GMat mask3C(const cv::GMat &src,
|
||||
const cv::GMat &mask);
|
||||
} // namespace custom
|
||||
|
||||
|
||||
// Functions implementation:
|
||||
// Returns an angle (in degrees) between a line given by two Points and
|
||||
// the horison. Note that the result depends on the arguments order:
|
||||
//! [ld_pp_incl]
|
||||
inline int custom::getLineInclinationAngleDegrees(const cv::Point &ptLeft, const cv::Point &ptRight)
|
||||
{
|
||||
const cv::Point residual = ptRight - ptLeft;
|
||||
if (residual.y == 0 && residual.x == 0)
|
||||
return 0;
|
||||
else
|
||||
return toIntRounded(atan2(toDouble(residual.y), toDouble(residual.x)) * 180.0 / CV_PI);
|
||||
}
|
||||
//! [ld_pp_incl]
|
||||
|
||||
// Approximates a forehead by half-ellipse using jaw points and some geometry
|
||||
// and then returns points of the contour; "capacity" is used to reserve enough
|
||||
// memory as there will be other points inserted.
|
||||
//! [ld_pp_fhd]
|
||||
inline Contour custom::getForeheadEllipse(const cv::Point &ptJawLeft,
|
||||
const cv::Point &ptJawRight,
|
||||
const cv::Point &ptJawLower)
|
||||
{
|
||||
Contour cntForehead;
|
||||
// The point amid the top two points of a jaw:
|
||||
const cv::Point ptFaceCenter((ptJawLeft + ptJawRight) / 2);
|
||||
// This will be the center of the ellipse.
|
||||
|
||||
// The angle between the jaw and the vertical:
|
||||
const int angFace = getLineInclinationAngleDegrees(ptJawLeft, ptJawRight);
|
||||
// This will be the inclination of the ellipse
|
||||
|
||||
// Counting the half-axis of the ellipse:
|
||||
const double jawWidth = cv::norm(ptJawLeft - ptJawRight);
|
||||
// A forehead width equals the jaw width, and we need a half-axis:
|
||||
const int axisX = toIntRounded(jawWidth / 2.0);
|
||||
|
||||
const double jawHeight = cv::norm(ptFaceCenter - ptJawLower);
|
||||
// According to research, in average a forehead is approximately 2/3 of
|
||||
// a jaw:
|
||||
const int axisY = toIntRounded(jawHeight * 2 / 3.0);
|
||||
|
||||
// We need the upper part of an ellipse:
|
||||
static constexpr int kAngForeheadStart = 180;
|
||||
static constexpr int kAngForeheadEnd = 360;
|
||||
cv::ellipse2Poly(ptFaceCenter, cv::Size(axisX, axisY), angFace, kAngForeheadStart, kAngForeheadEnd,
|
||||
config::kAngDelta, cntForehead);
|
||||
return cntForehead;
|
||||
}
|
||||
//! [ld_pp_fhd]
|
||||
|
||||
// Approximates the lower eye contour by half-ellipse using eye points and some
|
||||
// geometry and then returns points of the contour.
|
||||
//! [ld_pp_eye]
|
||||
inline Contour custom::getEyeEllipse(const cv::Point &ptLeft, const cv::Point &ptRight)
|
||||
{
|
||||
Contour cntEyeBottom;
|
||||
const cv::Point ptEyeCenter((ptRight + ptLeft) / 2);
|
||||
const int angle = getLineInclinationAngleDegrees(ptLeft, ptRight);
|
||||
const int axisX = toIntRounded(cv::norm(ptRight - ptLeft) / 2.0);
|
||||
// According to research, in average a Y axis of an eye is approximately
|
||||
// 1/3 of an X one.
|
||||
const int axisY = axisX / 3;
|
||||
// We need the lower part of an ellipse:
|
||||
static constexpr int kAngEyeStart = 0;
|
||||
static constexpr int kAngEyeEnd = 180;
|
||||
cv::ellipse2Poly(ptEyeCenter, cv::Size(axisX, axisY), angle, kAngEyeStart, kAngEyeEnd, config::kAngDelta,
|
||||
cntEyeBottom);
|
||||
return cntEyeBottom;
|
||||
}
|
||||
//! [ld_pp_eye]
|
||||
|
||||
//This function approximates an object (a mouth) by two half-ellipses using
|
||||
// 4 points of the axes' ends and then returns points of the contour:
|
||||
inline Contour custom::getPatchedEllipse(const cv::Point &ptLeft,
|
||||
const cv::Point &ptRight,
|
||||
const cv::Point &ptUp,
|
||||
const cv::Point &ptDown)
|
||||
{
|
||||
// Shared characteristics for both half-ellipses:
|
||||
const cv::Point ptMouthCenter((ptLeft + ptRight) / 2);
|
||||
const int angMouth = getLineInclinationAngleDegrees(ptLeft, ptRight);
|
||||
const int axisX = toIntRounded(cv::norm(ptRight - ptLeft) / 2.0);
|
||||
|
||||
// The top half-ellipse:
|
||||
Contour cntMouthTop;
|
||||
const int axisYTop = toIntRounded(cv::norm(ptMouthCenter - ptUp));
|
||||
// We need the upper part of an ellipse:
|
||||
static constexpr int angTopStart = 180;
|
||||
static constexpr int angTopEnd = 360;
|
||||
cv::ellipse2Poly(ptMouthCenter, cv::Size(axisX, axisYTop), angMouth, angTopStart, angTopEnd, config::kAngDelta, cntMouthTop);
|
||||
|
||||
// The bottom half-ellipse:
|
||||
Contour cntMouth;
|
||||
const int axisYBot = toIntRounded(cv::norm(ptMouthCenter - ptDown));
|
||||
// We need the lower part of an ellipse:
|
||||
static constexpr int angBotStart = 0;
|
||||
static constexpr int angBotEnd = 180;
|
||||
cv::ellipse2Poly(ptMouthCenter, cv::Size(axisX, axisYBot), angMouth, angBotStart, angBotEnd, config::kAngDelta, cntMouth);
|
||||
|
||||
// Pushing the upper part to vctOut
|
||||
std::copy(cntMouthTop.cbegin(), cntMouthTop.cend(), std::back_inserter(cntMouth));
|
||||
return cntMouth;
|
||||
}
|
||||
|
||||
//! [unsh]
|
||||
inline cv::GMat custom::unsharpMask(const cv::GMat &src,
|
||||
const int sigma,
|
||||
const float strength)
|
||||
{
|
||||
cv::GMat blurred = cv::gapi::medianBlur(src, sigma);
|
||||
cv::GMat laplacian = custom::GLaplacian::on(blurred, CV_8U);
|
||||
return (src - (laplacian * strength));
|
||||
}
|
||||
//! [unsh]
|
||||
|
||||
inline cv::GMat custom::mask3C(const cv::GMat &src,
|
||||
const cv::GMat &mask)
|
||||
{
|
||||
std::tuple<cv::GMat,cv::GMat,cv::GMat> tplIn = cv::gapi::split3(src);
|
||||
cv::GMat masked0 = cv::gapi::mask(std::get<0>(tplIn), mask);
|
||||
cv::GMat masked1 = cv::gapi::mask(std::get<1>(tplIn), mask);
|
||||
cv::GMat masked2 = cv::gapi::mask(std::get<2>(tplIn), mask);
|
||||
return cv::gapi::merge3(masked0, masked1, masked2);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
cv::namedWindow(config::kWinFaceBeautification, cv::WINDOW_NORMAL);
|
||||
cv::namedWindow(config::kWinInput, cv::WINDOW_NORMAL);
|
||||
|
||||
cv::CommandLineParser parser(argc, argv, config::kParserOptions);
|
||||
parser.about(config::kParserAbout);
|
||||
if (argc == 1 || parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Parsing input arguments
|
||||
const std::string faceXmlPath = parser.get<std::string>("facepath");
|
||||
const std::string faceBinPath = getWeightsPath(faceXmlPath);
|
||||
const std::string faceDevice = parser.get<std::string>("facedevice");
|
||||
|
||||
const std::string landmXmlPath = parser.get<std::string>("landmpath");
|
||||
const std::string landmBinPath = getWeightsPath(landmXmlPath);
|
||||
const std::string landmDevice = parser.get<std::string>("landmdevice");
|
||||
|
||||
// Declaring a graph
|
||||
// The version of a pipeline expression with a lambda-based
|
||||
// constructor is used to keep all temporary objects in a dedicated scope.
|
||||
//! [ppl]
|
||||
cv::GComputation pipeline([=]()
|
||||
{
|
||||
//! [net_usg_fd]
|
||||
cv::GMat gimgIn; // input
|
||||
|
||||
cv::GMat faceOut = cv::gapi::infer<custom::FaceDetector>(gimgIn);
|
||||
//! [net_usg_fd]
|
||||
GArrayROI garRects = custom::GFacePostProc::on(faceOut, gimgIn, config::kConfThresh); // post-proc
|
||||
|
||||
//! [net_usg_ld]
|
||||
cv::GArray<cv::GMat> landmOut = cv::gapi::infer<custom::LandmDetector>(garRects, gimgIn);
|
||||
//! [net_usg_ld]
|
||||
cv::GArray<Landmarks> garElems; // |
|
||||
cv::GArray<Contour> garJaws; // |output arrays
|
||||
std::tie(garElems, garJaws) = custom::GLandmPostProc::on(landmOut, garRects); // post-proc
|
||||
cv::GArray<Contour> garElsConts; // face elements
|
||||
cv::GArray<Contour> garFaceConts; // whole faces
|
||||
std::tie(garElsConts, garFaceConts) = custom::GGetContours::on(garElems, garJaws); // interpolation
|
||||
|
||||
//! [msk_ppline]
|
||||
cv::GMat mskSharp = custom::GFillPolyGContours::on(gimgIn, garElsConts); // |
|
||||
cv::GMat mskSharpG = cv::gapi::gaussianBlur(mskSharp, config::kGKernelSize, // |
|
||||
config::kGSigma); // |
|
||||
cv::GMat mskBlur = custom::GFillPolyGContours::on(gimgIn, garFaceConts); // |
|
||||
cv::GMat mskBlurG = cv::gapi::gaussianBlur(mskBlur, config::kGKernelSize, // |
|
||||
config::kGSigma); // |draw masks
|
||||
// The first argument in mask() is Blur as we want to subtract from // |
|
||||
// BlurG the next step: // |
|
||||
cv::GMat mskBlurFinal = mskBlurG - cv::gapi::mask(mskBlurG, mskSharpG); // |
|
||||
cv::GMat mskFacesGaussed = mskBlurFinal + mskSharpG; // |
|
||||
cv::GMat mskFacesWhite = cv::gapi::threshold(mskFacesGaussed, 0, 255, cv::THRESH_BINARY); // |
|
||||
cv::GMat mskNoFaces = cv::gapi::bitwise_not(mskFacesWhite); // |
|
||||
//! [msk_ppline]
|
||||
|
||||
cv::GMat gimgBilat = custom::GBilatFilter::on(gimgIn, config::kBSize,
|
||||
config::kBSigmaCol, config::kBSigmaSp);
|
||||
cv::GMat gimgSharp = custom::unsharpMask(gimgIn, config::kUnshSigma,
|
||||
config::kUnshStrength);
|
||||
// Applying the masks
|
||||
// Custom function mask3C() should be used instead of just gapi::mask()
|
||||
// as mask() provides CV_8UC1 source only (and we have CV_8U3C)
|
||||
cv::GMat gimgBilatMasked = custom::mask3C(gimgBilat, mskBlurFinal);
|
||||
cv::GMat gimgSharpMasked = custom::mask3C(gimgSharp, mskSharpG);
|
||||
cv::GMat gimgInMasked = custom::mask3C(gimgIn, mskNoFaces);
|
||||
cv::GMat gimgBeautif = gimgBilatMasked + gimgSharpMasked + gimgInMasked;
|
||||
return cv::GComputation(cv::GIn(gimgIn), cv::GOut(gimgBeautif,
|
||||
cv::gapi::copy(gimgIn),
|
||||
garFaceConts,
|
||||
garElsConts,
|
||||
garRects));
|
||||
});
|
||||
//! [ppl]
|
||||
// Declaring IE params for networks
|
||||
//! [net_param]
|
||||
auto faceParams = cv::gapi::ie::Params<custom::FaceDetector>
|
||||
{
|
||||
/*std::string*/ faceXmlPath,
|
||||
/*std::string*/ faceBinPath,
|
||||
/*std::string*/ faceDevice
|
||||
};
|
||||
auto landmParams = cv::gapi::ie::Params<custom::LandmDetector>
|
||||
{
|
||||
/*std::string*/ landmXmlPath,
|
||||
/*std::string*/ landmBinPath,
|
||||
/*std::string*/ landmDevice
|
||||
};
|
||||
//! [net_param]
|
||||
//! [netw]
|
||||
auto networks = cv::gapi::networks(faceParams, landmParams);
|
||||
//! [netw]
|
||||
// Declaring custom and fluid kernels have been used:
|
||||
//! [kern_pass_1]
|
||||
auto customKernels = cv::gapi::kernels<custom::GCPUBilateralFilter,
|
||||
custom::GCPULaplacian,
|
||||
custom::GCPUFillPolyGContours,
|
||||
custom::GCPUPolyLines,
|
||||
custom::GCPURectangle,
|
||||
custom::GCPUFacePostProc,
|
||||
custom::GCPULandmPostProc,
|
||||
custom::GCPUGetContours>();
|
||||
auto kernels = cv::gapi::combine(cv::gapi::core::fluid::kernels(),
|
||||
customKernels);
|
||||
//! [kern_pass_1]
|
||||
|
||||
Avg avg;
|
||||
size_t frames = 0;
|
||||
|
||||
// The flags for drawing/not drawing face boxes or/and landmarks in the
|
||||
// \"Input\" window:
|
||||
const bool flgBoxes = parser.get<bool>("boxes");
|
||||
const bool flgLandmarks = parser.get<bool>("landmarks");
|
||||
// The flag to involve stream pipelining:
|
||||
const bool flgStreaming = parser.get<bool>("streaming");
|
||||
// The flag to display the output images or not:
|
||||
const bool flgPerformance = parser.get<bool>("performance");
|
||||
// Now we are ready to compile the pipeline to a stream with specified
|
||||
// kernels, networks and image format expected to process
|
||||
if (flgStreaming == true)
|
||||
{
|
||||
//! [str_comp]
|
||||
cv::GStreamingCompiled stream = pipeline.compileStreaming(cv::compile_args(kernels, networks));
|
||||
//! [str_comp]
|
||||
// Setting the source for the stream:
|
||||
//! [str_src]
|
||||
if (parser.has("input"))
|
||||
{
|
||||
stream.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(parser.get<cv::String>("input")));
|
||||
}
|
||||
//! [str_src]
|
||||
else
|
||||
{
|
||||
stream.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(0));
|
||||
}
|
||||
// Declaring output variables
|
||||
// Streaming:
|
||||
cv::Mat imgShow;
|
||||
cv::Mat imgBeautif;
|
||||
std::vector<Contour> vctFaceConts, vctElsConts;
|
||||
VectorROI vctRects;
|
||||
if (flgPerformance == true)
|
||||
{
|
||||
auto out_vector = cv::gout(imgBeautif, imgShow, vctFaceConts,
|
||||
vctElsConts, vctRects);
|
||||
stream.start();
|
||||
avg.start();
|
||||
while (stream.running())
|
||||
{
|
||||
stream.pull(std::move(out_vector));
|
||||
frames++;
|
||||
}
|
||||
}
|
||||
else // flgPerformance == false
|
||||
{
|
||||
//! [str_loop]
|
||||
auto out_vector = cv::gout(imgBeautif, imgShow, vctFaceConts,
|
||||
vctElsConts, vctRects);
|
||||
stream.start();
|
||||
avg.start();
|
||||
while (stream.running())
|
||||
{
|
||||
if (!stream.try_pull(std::move(out_vector)))
|
||||
{
|
||||
// Use a try_pull() to obtain data.
|
||||
// If there's no data, let UI refresh (and handle keypress)
|
||||
if (cv::waitKey(1) >= 0) break;
|
||||
else continue;
|
||||
}
|
||||
frames++;
|
||||
// Drawing face boxes and landmarks if necessary:
|
||||
if (flgLandmarks == true)
|
||||
{
|
||||
cv::polylines(imgShow, vctFaceConts, config::kClosedLine,
|
||||
config::kClrYellow);
|
||||
cv::polylines(imgShow, vctElsConts, config::kClosedLine,
|
||||
config::kClrYellow);
|
||||
}
|
||||
if (flgBoxes == true)
|
||||
for (auto rect : vctRects)
|
||||
cv::rectangle(imgShow, rect, config::kClrGreen);
|
||||
cv::imshow(config::kWinInput, imgShow);
|
||||
cv::imshow(config::kWinFaceBeautification, imgBeautif);
|
||||
}
|
||||
//! [str_loop]
|
||||
}
|
||||
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
|
||||
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
|
||||
}
|
||||
else // serial mode:
|
||||
{
|
||||
//! [bef_cap]
|
||||
#include <opencv2/videoio.hpp>
|
||||
cv::GCompiled cc;
|
||||
cv::VideoCapture cap;
|
||||
if (parser.has("input"))
|
||||
{
|
||||
cap.open(parser.get<cv::String>("input"));
|
||||
}
|
||||
//! [bef_cap]
|
||||
else if (!cap.open(0))
|
||||
{
|
||||
std::cout << "No input available" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
if (flgPerformance == true)
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
cv::Mat img;
|
||||
cv::Mat imgShow;
|
||||
cv::Mat imgBeautif;
|
||||
std::vector<Contour> vctFaceConts, vctElsConts;
|
||||
VectorROI vctRects;
|
||||
cap >> img;
|
||||
if (img.empty())
|
||||
{
|
||||
break;
|
||||
}
|
||||
frames++;
|
||||
if (!cc)
|
||||
{
|
||||
cc = pipeline.compile(cv::descr_of(img), cv::compile_args(kernels, networks));
|
||||
avg.start();
|
||||
}
|
||||
cc(cv::gin(img), cv::gout(imgBeautif, imgShow, vctFaceConts,
|
||||
vctElsConts, vctRects));
|
||||
}
|
||||
}
|
||||
else // flgPerformance == false
|
||||
{
|
||||
//! [bef_loop]
|
||||
while (cv::waitKey(1) < 0)
|
||||
{
|
||||
cv::Mat img;
|
||||
cv::Mat imgShow;
|
||||
cv::Mat imgBeautif;
|
||||
std::vector<Contour> vctFaceConts, vctElsConts;
|
||||
VectorROI vctRects;
|
||||
cap >> img;
|
||||
if (img.empty())
|
||||
{
|
||||
cv::waitKey();
|
||||
break;
|
||||
}
|
||||
frames++;
|
||||
//! [apply]
|
||||
pipeline.apply(cv::gin(img), cv::gout(imgBeautif, imgShow,
|
||||
vctFaceConts,
|
||||
vctElsConts, vctRects),
|
||||
cv::compile_args(kernels, networks));
|
||||
//! [apply]
|
||||
if (frames == 1)
|
||||
{
|
||||
// Start timer only after 1st frame processed -- compilation
|
||||
// happens on-the-fly here
|
||||
avg.start();
|
||||
}
|
||||
// Drawing face boxes and landmarks if necessary:
|
||||
if (flgLandmarks == true)
|
||||
{
|
||||
cv::polylines(imgShow, vctFaceConts, config::kClosedLine,
|
||||
config::kClrYellow);
|
||||
cv::polylines(imgShow, vctElsConts, config::kClosedLine,
|
||||
config::kClrYellow);
|
||||
}
|
||||
if (flgBoxes == true)
|
||||
for (auto rect : vctRects)
|
||||
cv::rectangle(imgShow, rect, config::kClrGreen);
|
||||
cv::imshow(config::kWinInput, imgShow);
|
||||
cv::imshow(config::kWinFaceBeautification, imgBeautif);
|
||||
}
|
||||
}
|
||||
//! [bef_loop]
|
||||
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
|
||||
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
#include <iostream>
|
||||
int main()
|
||||
{
|
||||
std::cerr << "This tutorial code requires G-API module "
|
||||
"with Inference Engine backend to run"
|
||||
<< std::endl;
|
||||
return 1;
|
||||
}
|
||||
#endif // HAVE_OPECV_GAPI
|
Reference in New Issue
Block a user