mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-06 18:24:38 +08:00
initial commit
This commit is contained in:
172
samples/cpp/squares.cpp
Normal file
172
samples/cpp/squares.cpp
Normal file
@ -0,0 +1,172 @@
|
||||
|
||||
// The "Square Detector" program.
|
||||
// It loads several images sequentially and tries to find squares in
|
||||
// each image
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
static void help(const char* programName)
|
||||
{
|
||||
cout <<
|
||||
"\nA program using pyramid scaling, Canny, contours and contour simplification\n"
|
||||
"to find squares in a list of images (pic1-6.png)\n"
|
||||
"Returns sequence of squares detected on the image.\n"
|
||||
"Call:\n"
|
||||
"./" << programName << " [file_name (optional)]\n"
|
||||
"Using OpenCV version " << CV_VERSION << "\n" << endl;
|
||||
}
|
||||
|
||||
|
||||
int thresh = 50, N = 11;
|
||||
const char* wndname = "Square Detection Demo";
|
||||
|
||||
// helper function:
|
||||
// finds a cosine of angle between vectors
|
||||
// from pt0->pt1 and from pt0->pt2
|
||||
static double angle( Point pt1, Point pt2, Point pt0 )
|
||||
{
|
||||
double dx1 = pt1.x - pt0.x;
|
||||
double dy1 = pt1.y - pt0.y;
|
||||
double dx2 = pt2.x - pt0.x;
|
||||
double dy2 = pt2.y - pt0.y;
|
||||
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
|
||||
}
|
||||
|
||||
// returns sequence of squares detected on the image.
|
||||
static void findSquares( const Mat& image, vector<vector<Point> >& squares )
|
||||
{
|
||||
squares.clear();
|
||||
|
||||
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
|
||||
|
||||
// down-scale and upscale the image to filter out the noise
|
||||
pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
|
||||
pyrUp(pyr, timg, image.size());
|
||||
vector<vector<Point> > contours;
|
||||
|
||||
// find squares in every color plane of the image
|
||||
for( int c = 0; c < 3; c++ )
|
||||
{
|
||||
int ch[] = {c, 0};
|
||||
mixChannels(&timg, 1, &gray0, 1, ch, 1);
|
||||
|
||||
// try several threshold levels
|
||||
for( int l = 0; l < N; l++ )
|
||||
{
|
||||
// hack: use Canny instead of zero threshold level.
|
||||
// Canny helps to catch squares with gradient shading
|
||||
if( l == 0 )
|
||||
{
|
||||
// apply Canny. Take the upper threshold from slider
|
||||
// and set the lower to 0 (which forces edges merging)
|
||||
Canny(gray0, gray, 0, thresh, 5);
|
||||
// dilate canny output to remove potential
|
||||
// holes between edge segments
|
||||
dilate(gray, gray, Mat(), Point(-1,-1));
|
||||
}
|
||||
else
|
||||
{
|
||||
// apply threshold if l!=0:
|
||||
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
|
||||
gray = gray0 >= (l+1)*255/N;
|
||||
}
|
||||
|
||||
// find contours and store them all as a list
|
||||
findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
|
||||
|
||||
vector<Point> approx;
|
||||
|
||||
// test each contour
|
||||
for( size_t i = 0; i < contours.size(); i++ )
|
||||
{
|
||||
// approximate contour with accuracy proportional
|
||||
// to the contour perimeter
|
||||
approxPolyDP(contours[i], approx, arcLength(contours[i], true)*0.02, true);
|
||||
|
||||
// square contours should have 4 vertices after approximation
|
||||
// relatively large area (to filter out noisy contours)
|
||||
// and be convex.
|
||||
// Note: absolute value of an area is used because
|
||||
// area may be positive or negative - in accordance with the
|
||||
// contour orientation
|
||||
if( approx.size() == 4 &&
|
||||
fabs(contourArea(approx)) > 1000 &&
|
||||
isContourConvex(approx) )
|
||||
{
|
||||
double maxCosine = 0;
|
||||
|
||||
for( int j = 2; j < 5; j++ )
|
||||
{
|
||||
// find the maximum cosine of the angle between joint edges
|
||||
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
|
||||
maxCosine = MAX(maxCosine, cosine);
|
||||
}
|
||||
|
||||
// if cosines of all angles are small
|
||||
// (all angles are ~90 degree) then write quandrange
|
||||
// vertices to resultant sequence
|
||||
if( maxCosine < 0.3 )
|
||||
squares.push_back(approx);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// the function draws all the squares in the image
|
||||
static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
|
||||
{
|
||||
for( size_t i = 0; i < squares.size(); i++ )
|
||||
{
|
||||
const Point* p = &squares[i][0];
|
||||
int n = (int)squares[i].size();
|
||||
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, LINE_AA);
|
||||
}
|
||||
|
||||
imshow(wndname, image);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
static const char* names[] = { "pic1.png", "pic2.png", "pic3.png",
|
||||
"pic4.png", "pic5.png", "pic6.png", 0 };
|
||||
help(argv[0]);
|
||||
|
||||
if( argc > 1)
|
||||
{
|
||||
names[0] = argv[1];
|
||||
names[1] = "0";
|
||||
}
|
||||
|
||||
vector<vector<Point> > squares;
|
||||
|
||||
for( int i = 0; names[i] != 0; i++ )
|
||||
{
|
||||
string filename = samples::findFile(names[i]);
|
||||
Mat image = imread(filename, IMREAD_COLOR);
|
||||
if( image.empty() )
|
||||
{
|
||||
cout << "Couldn't load " << filename << endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
findSquares(image, squares);
|
||||
drawSquares(image, squares);
|
||||
|
||||
int c = waitKey();
|
||||
if( c == 27 )
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user