mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-06 18:24:38 +08:00
initial commit
This commit is contained in:
70
samples/cpp/em.cpp
Normal file
70
samples/cpp/em.cpp
Normal file
@ -0,0 +1,70 @@
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/ml.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
int main( int /*argc*/, char** /*argv*/ )
|
||||
{
|
||||
const int N = 4;
|
||||
const int N1 = (int)sqrt((double)N);
|
||||
const Scalar colors[] =
|
||||
{
|
||||
Scalar(0,0,255), Scalar(0,255,0),
|
||||
Scalar(0,255,255),Scalar(255,255,0)
|
||||
};
|
||||
|
||||
int i, j;
|
||||
int nsamples = 100;
|
||||
Mat samples( nsamples, 2, CV_32FC1 );
|
||||
Mat labels;
|
||||
Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 );
|
||||
Mat sample( 1, 2, CV_32FC1 );
|
||||
|
||||
samples = samples.reshape(2, 0);
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
// form the training samples
|
||||
Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N );
|
||||
|
||||
Scalar mean(((i%N1)+1)*img.rows/(N1+1),
|
||||
((i/N1)+1)*img.rows/(N1+1));
|
||||
Scalar sigma(30,30);
|
||||
randn( samples_part, mean, sigma );
|
||||
}
|
||||
samples = samples.reshape(1, 0);
|
||||
|
||||
// cluster the data
|
||||
Ptr<EM> em_model = EM::create();
|
||||
em_model->setClustersNumber(N);
|
||||
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
|
||||
em_model->setTermCriteria(TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1));
|
||||
em_model->trainEM( samples, noArray(), labels, noArray() );
|
||||
|
||||
// classify every image pixel
|
||||
for( i = 0; i < img.rows; i++ )
|
||||
{
|
||||
for( j = 0; j < img.cols; j++ )
|
||||
{
|
||||
sample.at<float>(0) = (float)j;
|
||||
sample.at<float>(1) = (float)i;
|
||||
int response = cvRound(em_model->predict2( sample, noArray() )[1]);
|
||||
Scalar c = colors[response];
|
||||
|
||||
circle( img, Point(j, i), 1, c*0.75, FILLED );
|
||||
}
|
||||
}
|
||||
|
||||
//draw the clustered samples
|
||||
for( i = 0; i < nsamples; i++ )
|
||||
{
|
||||
Point pt(cvRound(samples.at<float>(i, 0)), cvRound(samples.at<float>(i, 1)));
|
||||
circle( img, pt, 1, colors[labels.at<int>(i)], FILLED );
|
||||
}
|
||||
|
||||
imshow( "EM-clustering result", img );
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user