mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-06 18:24:38 +08:00
initial commit
This commit is contained in:
161
modules/js/test/test_objdetect.js
Normal file
161
modules/js/test/test_objdetect.js
Normal file
@ -0,0 +1,161 @@
|
||||
// //////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//
|
||||
|
||||
// //////////////////////////////////////////////////////////////////////////////////////
|
||||
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
|
||||
//
|
||||
// LICENSE AGREEMENT
|
||||
// Copyright (c) 2015 The Regents of the University of California (Regents)
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are met:
|
||||
// 1. Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// 2. Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in the
|
||||
// documentation and/or other materials provided with the distribution.
|
||||
// 3. Neither the name of the University nor the
|
||||
// names of its contributors may be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
|
||||
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
|
||||
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
cv.FS_createLazyFile('/', 'haarcascade_frontalface_default.xml', // eslint-disable-line new-cap
|
||||
'haarcascade_frontalface_default.xml', true, false);
|
||||
}
|
||||
|
||||
QUnit.module('Object Detection', {});
|
||||
QUnit.test('Cascade classification', function(assert) {
|
||||
// Group rectangle
|
||||
{
|
||||
let rectList = new cv.RectVector();
|
||||
let weights = new cv.IntVector();
|
||||
let groupThreshold = 1;
|
||||
const eps = 0.2;
|
||||
|
||||
let rect1 = new cv.Rect(1, 2, 3, 4);
|
||||
let rect2 = new cv.Rect(1, 4, 2, 3);
|
||||
|
||||
rectList.push_back(rect1);
|
||||
rectList.push_back(rect2);
|
||||
|
||||
cv.groupRectangles(rectList, weights, groupThreshold, eps);
|
||||
|
||||
|
||||
rectList.delete();
|
||||
weights.delete();
|
||||
}
|
||||
|
||||
// CascadeClassifier
|
||||
{
|
||||
let classifier = new cv.CascadeClassifier();
|
||||
const modelPath = '/haarcascade_frontalface_default.xml';
|
||||
|
||||
assert.equal(classifier.empty(), true);
|
||||
|
||||
|
||||
classifier.load(modelPath);
|
||||
assert.equal(classifier.empty(), false);
|
||||
|
||||
let image = cv.Mat.eye({height: 10, width: 10}, cv.CV_8UC3);
|
||||
let objects = new cv.RectVector();
|
||||
let numDetections = new cv.IntVector();
|
||||
const scaleFactor = 1.1;
|
||||
const minNeighbors = 3;
|
||||
const flags = 0;
|
||||
const minSize = {height: 0, width: 0};
|
||||
const maxSize = {height: 10, width: 10};
|
||||
|
||||
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
|
||||
minNeighbors, flags, minSize, maxSize);
|
||||
|
||||
// test default parameters
|
||||
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
|
||||
minNeighbors, flags, minSize);
|
||||
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
|
||||
minNeighbors, flags);
|
||||
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
|
||||
minNeighbors);
|
||||
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor);
|
||||
|
||||
classifier.delete();
|
||||
objects.delete();
|
||||
numDetections.delete();
|
||||
}
|
||||
|
||||
// HOGDescriptor
|
||||
{
|
||||
let hog = new cv.HOGDescriptor();
|
||||
let mat = new cv.Mat({height: 10, width: 10}, cv.CV_8UC1);
|
||||
let descriptors = new cv.FloatVector();
|
||||
let locations = new cv.PointVector();
|
||||
|
||||
|
||||
assert.equal(hog.winSize.height, 128);
|
||||
assert.equal(hog.winSize.width, 64);
|
||||
assert.equal(hog.nbins, 9);
|
||||
assert.equal(hog.derivAperture, 1);
|
||||
assert.equal(hog.winSigma, -1);
|
||||
assert.equal(hog.histogramNormType, 0);
|
||||
assert.equal(hog.nlevels, 64);
|
||||
|
||||
hog.nlevels = 32;
|
||||
assert.equal(hog.nlevels, 32);
|
||||
|
||||
hog.delete();
|
||||
mat.delete();
|
||||
descriptors.delete();
|
||||
locations.delete();
|
||||
}
|
||||
});
|
Reference in New Issue
Block a user