mirror of
https://gitcode.com/gh_mirrors/es/esp32-opencv.git
synced 2025-08-14 18:50:49 +08:00
initial commit
This commit is contained in:
201
modules/features2d/test/test_detectors_regression.impl.hpp
Normal file
201
modules/features2d/test/test_detectors_regression.impl.hpp
Normal file
@ -0,0 +1,201 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
/****************************************************************************************\
|
||||
* Regression tests for feature detectors comparing keypoints. *
|
||||
\****************************************************************************************/
|
||||
|
||||
class CV_FeatureDetectorTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) :
|
||||
name(_name), fdetector(_fdetector) {}
|
||||
|
||||
protected:
|
||||
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
|
||||
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
|
||||
|
||||
void emptyDataTest();
|
||||
void regressionTest(); // TODO test of detect() with mask
|
||||
|
||||
virtual void run( int );
|
||||
|
||||
string name;
|
||||
Ptr<FeatureDetector> fdetector;
|
||||
};
|
||||
|
||||
void CV_FeatureDetectorTest::emptyDataTest()
|
||||
{
|
||||
// One image.
|
||||
Mat image;
|
||||
vector<KeyPoint> keypoints;
|
||||
try
|
||||
{
|
||||
fdetector->detect( image, keypoints );
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
if( !keypoints.empty() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
return;
|
||||
}
|
||||
|
||||
// Several images.
|
||||
vector<Mat> images;
|
||||
vector<vector<KeyPoint> > keypointCollection;
|
||||
try
|
||||
{
|
||||
fdetector->detect( images, keypointCollection );
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
}
|
||||
|
||||
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
|
||||
{
|
||||
const float maxPtDif = 1.f;
|
||||
const float maxSizeDif = 1.f;
|
||||
const float maxAngleDif = 2.f;
|
||||
const float maxResponseDif = 0.1f;
|
||||
|
||||
float dist = (float)cv::norm( p1.pt - p2.pt );
|
||||
return (dist < maxPtDif &&
|
||||
fabs(p1.size - p2.size) < maxSizeDif &&
|
||||
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||||
abs(p1.response - p2.response) < maxResponseDif &&
|
||||
p1.octave == p2.octave &&
|
||||
p1.class_id == p2.class_id );
|
||||
}
|
||||
|
||||
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
|
||||
{
|
||||
const float maxCountRatioDif = 0.01f;
|
||||
|
||||
// Compare counts of validation and calculated keypoints.
|
||||
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
|
||||
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n",
|
||||
validKeypoints.size(), calcKeypoints.size() );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
return;
|
||||
}
|
||||
|
||||
int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size());
|
||||
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
|
||||
for( size_t v = 0; v < validKeypoints.size(); v++ )
|
||||
{
|
||||
int nearestIdx = -1;
|
||||
float minDist = std::numeric_limits<float>::max();
|
||||
|
||||
for( size_t c = 0; c < calcKeypoints.size(); c++ )
|
||||
{
|
||||
progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 );
|
||||
float curDist = (float)cv::norm( calcKeypoints[c].pt - validKeypoints[v].pt );
|
||||
if( curDist < minDist )
|
||||
{
|
||||
minDist = curDist;
|
||||
nearestIdx = (int)c;
|
||||
}
|
||||
}
|
||||
|
||||
assert( minDist >= 0 );
|
||||
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
|
||||
badPointCount++;
|
||||
}
|
||||
ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
|
||||
badPointCount, validKeypoints.size(), calcKeypoints.size() );
|
||||
if( badPointCount > 0.9 * commonPointCount )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
ts->printf( cvtest::TS::LOG, " - OK\n" );
|
||||
}
|
||||
|
||||
void CV_FeatureDetectorTest::regressionTest()
|
||||
{
|
||||
assert( !fdetector.empty() );
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
|
||||
|
||||
// Read the test image.
|
||||
Mat image = imread( imgFilename );
|
||||
if( image.empty() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
FileStorage fs( resFilename, FileStorage::READ );
|
||||
|
||||
// Compute keypoints.
|
||||
vector<KeyPoint> calcKeypoints;
|
||||
fdetector->detect( image, calcKeypoints );
|
||||
|
||||
if( fs.isOpened() ) // Compare computed and valid keypoints.
|
||||
{
|
||||
// TODO compare saved feature detector params with current ones
|
||||
|
||||
// Read validation keypoints set.
|
||||
vector<KeyPoint> validKeypoints;
|
||||
read( fs["keypoints"], validKeypoints );
|
||||
if( validKeypoints.empty() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
compareKeypointSets( validKeypoints, calcKeypoints );
|
||||
}
|
||||
else // Write detector parameters and computed keypoints as validation data.
|
||||
{
|
||||
fs.open( resFilename, FileStorage::WRITE );
|
||||
if( !fs.isOpened() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
fs << "detector_params" << "{";
|
||||
fdetector->write( fs );
|
||||
fs << "}";
|
||||
|
||||
write( fs, "keypoints", calcKeypoints );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_FeatureDetectorTest::run( int /*start_from*/ )
|
||||
{
|
||||
if( !fdetector )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
emptyDataTest();
|
||||
regressionTest();
|
||||
|
||||
ts->set_failed_test_info( cvtest::TS::OK );
|
||||
}
|
||||
|
||||
}} // namespace
|
Reference in New Issue
Block a user