mirror of
https://gitee.com/eda-development/eda_fpga.git
synced 2025-08-06 17:22:03 +08:00
224 lines
4.5 KiB
Groff
224 lines
4.5 KiB
Groff
.TH GVGEN 1 "5 June 2012"
|
|
.SH NAME
|
|
gvgen \- generate graphs
|
|
.SH SYNOPSIS
|
|
.B gvgen
|
|
[
|
|
.B \-dv?
|
|
]
|
|
[
|
|
.BI -i n
|
|
]
|
|
[
|
|
.BI -c n
|
|
]
|
|
[
|
|
.BI -C x,y
|
|
]
|
|
[
|
|
.BI -g [\fBf\fP]x,y
|
|
]
|
|
[
|
|
.BI -G [\fBf\fP]x,y
|
|
]
|
|
[
|
|
.BI -h n
|
|
]
|
|
[
|
|
.BI -k n
|
|
]
|
|
[
|
|
.BI -b x,y
|
|
]
|
|
[
|
|
.BI -B x,y
|
|
]
|
|
[
|
|
.BI -m n
|
|
]
|
|
[
|
|
.BI -M x,y
|
|
]
|
|
[
|
|
.BI -p n
|
|
]
|
|
[
|
|
.BI -r x,y
|
|
]
|
|
[
|
|
.BI -R x
|
|
]
|
|
[
|
|
.BI -s n
|
|
]
|
|
[
|
|
.BI -S n
|
|
]
|
|
[
|
|
.BI -S n,d
|
|
]
|
|
[
|
|
.BI -t n
|
|
]
|
|
[
|
|
.BI -t d,n
|
|
]
|
|
[
|
|
.BI -T x,y
|
|
]
|
|
[
|
|
.BI -T x,y,u,v
|
|
]
|
|
[
|
|
.BI -w n
|
|
]
|
|
[
|
|
.BI -n prefix
|
|
]
|
|
[
|
|
.BI -N name
|
|
]
|
|
[
|
|
.BI -o outfile
|
|
]
|
|
.SH DESCRIPTION
|
|
.B gvgen
|
|
generates a variety of simple, regularly-structured abstract
|
|
graphs.
|
|
.SH OPTIONS
|
|
The following options are supported:
|
|
.TP
|
|
.BI \-c " n"
|
|
Generate a cycle with \fIn\fP vertices and edges.
|
|
.TP
|
|
.BI \-C " x,y"
|
|
Generate an \fIx\fP by \fIy\fP cylinder.
|
|
This will have \fIx*y\fP vertices and
|
|
\fI2*x*y - y\fP edges.
|
|
.TP
|
|
.BI \-g " [\fBf\fP]x,y"
|
|
Generate an \fIx\fP by \fIy\fP grid.
|
|
If \fBf\fP is given, the grid is folded, with an edge
|
|
attaching each pair of opposing corner vertices.
|
|
This will have \fIx*y\fP vertices and
|
|
\fI2*x*y - y - x\fP edges if unfolded and
|
|
\fI2*x*y - y - x + 2\fP edges if folded.
|
|
.TP
|
|
.BI \-G " [\fBf\fP]x,y"
|
|
Generate an \fIx\fP by \fIy\fP partial grid.
|
|
If \fBf\fP is given, the grid is folded, with an edge
|
|
attaching each pair of opposing corner vertices.
|
|
This will have \fIx*y\fP vertices.
|
|
.TP
|
|
.BI \-h " n"
|
|
Generate a hypercube of degree \fIn\fP.
|
|
This will have \fI2^n\fP vertices and \fIn*2^(n-1)\fP edges.
|
|
.TP
|
|
.BI \-k " n"
|
|
Generate a complete graph on \fIn\fP vertices with
|
|
\fIn*(n-1)/2\fP edges.
|
|
.TP
|
|
.BI \-b " x,y"
|
|
Generate a complete \fIx\fP by \fIy\fP bipartite graph.
|
|
This will have \fIx+y\fP vertices and
|
|
\fIx*y\fP edges.
|
|
.TP
|
|
.BI \-B " x,y"
|
|
Generate an \fIx\fP by \fIy\fP ball, i.e., an \fIx\fP by \fIy\fP cylinder
|
|
with two "cap" nodes closing the ends.
|
|
This will have \fIx*y + 2\fP vertices
|
|
and \fI2*x*y + y\fP edges.
|
|
.TP
|
|
.BI \-m " n"
|
|
Generate a triangular mesh with \fIn\fP vertices on a side.
|
|
This will have \fI(n+1)*n/2\fP vertices
|
|
and \fI3*(n-1)*n/2\fP edges.
|
|
.TP
|
|
.BI \-M " x,y"
|
|
Generate an x by y Moebius strip.
|
|
This will have \fIx*y\fP vertices
|
|
and \fI2*x*y - y\fP edges.
|
|
.TP
|
|
.BI \-p " n"
|
|
Generate a path on \fIn\fP vertices.
|
|
This will have \fIn-1\fP edges.
|
|
.TP
|
|
.BI \-r " x,y"
|
|
Generate a random graph.
|
|
The number of vertices will be the largest value of the form \fI2^n-1\fP less than or
|
|
equal to \fIx\fP. Larger values of \fIy\fP increase the density of the graph.
|
|
.TP
|
|
.BI \-R " x"
|
|
Generate a random rooted tree on \fIx\fP vertices.
|
|
.TP
|
|
.BI \-s " n"
|
|
Generate a star on \fIn\fP vertices.
|
|
This will have \fIn-1\fP edges.
|
|
.TP
|
|
.BI \-S " n"
|
|
Generate a Sierpinski graph of order \fIn\fP.
|
|
This will have \fI3*(3^(n-1) + 1)/2\fP vertices and
|
|
\fI3^n\fP edges.
|
|
.TP
|
|
.BI \-S " n,d"
|
|
Generate a \fId\fP-dimensional Sierpinski graph of order \fIn\fP.
|
|
At present, \fId\fP must be 2 or 3.
|
|
For d equal to 3, there will be \fI4*(4^(n-1) + 1)/2\fP vertices and
|
|
\fI6 * 4^(n-1)\fP edges.
|
|
.TP
|
|
.BI \-t " n"
|
|
Generate a binary tree of height \fIn\fP.
|
|
This will have \fI2^n-1\fP vertices and
|
|
\fI2^n-2\fP edges.
|
|
.TP
|
|
.BI \-t " h,n"
|
|
Generate a n-ary tree of height \fIh\fP.
|
|
.TP
|
|
.BI \-T " x,y"
|
|
.TP
|
|
.BI \-T " x,y,u,v"
|
|
Generate an \fIx\fP by \fIy\fP torus.
|
|
This will have \fIx*y\fP vertices and
|
|
\fI2*x*y\fP edges.
|
|
If \fIu\fP and \fIv\fP are given, they specify twists of that amount in
|
|
the horizontal and vertical directions, respectively.
|
|
.TP
|
|
.BI \-w " n"
|
|
Generate a path on \fIn\fP vertices.
|
|
This will have \fIn-1\fP edges.
|
|
.TP
|
|
.BI \-i " n"
|
|
Generate \fIn\fP graphs of the requested type. At present, only available if
|
|
the \fB-R\fP flag is used.
|
|
.TP
|
|
.BI \-n " prefix"
|
|
Normally, integers are used as node names. If \fIprefix\fP is specified,
|
|
this will be prepended to the integer to create the name.
|
|
.TP
|
|
.BI \-N " name"
|
|
Use \fIname\fP as the name of the graph.
|
|
By default, the graph is anonymous.
|
|
.TP
|
|
.BI \-o " outfile"
|
|
If specified, the generated graph is written into the file
|
|
.I outfile.
|
|
Otherwise, the graph is written to standard out.
|
|
.TP
|
|
.B \-d
|
|
Make the generated graph directed.
|
|
.TP
|
|
.B \-v
|
|
Verbose output.
|
|
.TP
|
|
.B \-?
|
|
Print usage information.
|
|
.SH "EXIT STATUS"
|
|
.B gvgen
|
|
exits with 0 on successful completion,
|
|
and exits with 1 if given an ill-formed or incorrect flag,
|
|
or if the specified output file could not be opened.
|
|
.SH AUTHOR
|
|
Emden R. Gansner <erg@research.att.com>
|
|
.SH "SEE ALSO"
|
|
gc(1), acyclic(1), gvpr(1), gvcolor(1), ccomps(1), sccmap(1), tred(1), libgraph(3)
|